【C++】Cmake使用教程

本文详细介绍了如何在Linux环境下使用CMake进行程序编译,从简单的环境搭建、入门示例,到处理多个源文件、项目级的组织结构,再到动态库和静态库的编译控制。通过实例展示了CMake的使用方法和优势,帮助读者掌握CMake的使用技巧。

引言

CMake是开源、跨平台的构建工具,可以让我们通过编写简单的配置文件去生成本地的Makefile,这个配置文件是独立于运行平台和编译器的,这样就不用亲自去编写Makefile了,而且配置文件可以直接拿到其它平台上使用,无需修改,非常方便。

本文主要讲述在Linux下如何使用CMake来编译我们的程序。

一 环境搭建

我使用的是ubuntu18.04,安装cmake使用如下命令:

sudo apt install cmake

安装完成后,在终端下输入:

cmake -version

查看cmake版本

这样cmake就安装好了。

二 简单入门

首先让我们从最简单的代码入手,先来体验下cmake是如何操作的。

2.1 项目结构

2.2 示例源码

打开终端,输入:

touch main.c CMakeLists.txt

编写main.c,如下:

main.c
#include <stdio.h>
int main(void)
{
printf("Hello World\n");
return 0;
}

然后在main.c同级目录下编写CMakeLists.txt,内容如下:

CMakeLists.txt
cmake_minimum_required (VERSION 2.8)
project (demo)
add_executable(main main.c)

2.3 运行查看

在终端下切到main.c所在的目录下,然后输入以下命令运行cmake:

cmake .

输出结果如下:

PS:此时,建议留意一下这个文件夹下多生成的文件都有哪些。

可以看到成功生成了Makefile,还有一些cmake运行时自动生成的文件。

然后在终端下输入make:

可以看到执行cmake生成的Makefile可以显示进度,并带颜色。再看下目录下的文件:

可以看到我们需要的可执行文件main也成功生成了!

然后运行main:

运行成功!

PS:如果想重新生成main,输入make clean就可以删除main这个文件。然后重新make就行。

需要注意的是:我希望你着重看一下这时候这个文件夹下都有哪些文件。

三 编译多个源文件

3.1 在同一个目录下有多个源文件

3.1.1 简单版本

接下来进入稍微复杂的例子:在同一个目录下有多个源文件。

3.1.1.1 项目结构

3.1.1.2 示例代码

首先删除之前的文件:

rm -rf CMakeFiles CMakeCache.txt cmake_install.cmake Makefile main

在之前的目录下添加2个文件,testFunc.c和testFunc.h:

touch testFunc.c testFunc.h

添加完后整体文件结构如下:

testFunc.c

/*
** testFunc.c
*/
#include <stdio.h>
#include "testFunc.h"
void func(int data)
{
printf("data is %d\n", data);
}

testFunc.h

/*
** testFunc.h
*/
#ifndef _TEST_FUNC_H_
#define _TEST_FUNC_H_
void func(int data);
#endif

修改main.c,调用testFunc.h里声明的函数func():

main.c

#include <stdio.h>
#include "testFunc.h"
int main(void)
{
func(100);
return 0;
}

修改CMakeLists.txt,在add_executable的参数里把testFunc.c加进来:

CMakeLists.txt

cmake_minimum_required (VERSION 2.8)
project (demo)
add_executable(main main.c testFunc.c)

3.1.1.3 运行查看

cmake .

make

然后运行查看:

运行成功!

可以类推,如果在同一目录下有多个源文件,那么只要在add_executable里把所有源文件都添加进去就可以了。

但是如果有一百个源文件,再这样做就有点坑了,无法体现cmake的优越性。

因此cmake提供了一个命令可以把指定目录下所有的源文件存储在一个变量中,这个命令就是

aux_source_directory(dir var)

第一个参数dir是指定目录,第二个参数var是用于存放源文件列表的变量。

接下来写个进阶版的demo使用一下这个变量。

3.1.2 进阶版本

3.1.2.1 项目结构

3.1.2.2 示例源码

删除无关文件

rm -rf CMakeFiles CMakeCache.txt cmake_install.cmake main Makefile

创建文件:

touch testFunc1.c testFunc1.h

testFunc1.c
/*
** testFunc1.c
*/
#include <stdio.h>
#include "testFunc1.h"
void func1(int data)
{
    printf("data is %d\n", data);
}

testFunc1.h

/*
** testFunc1.h
*/
#ifndef _TEST_FUNC1_H_
#define _TEST_FUNC1_H_
void func1(int data);
#endif

再修改main.c,调用testFunc1.h里声明的函数func1():

main.c
#include <stdio.h>
#include "testFunc.h"
#include "testFunc1.h"
int main(void)
{
    func(100);
    func1(200);
    return 0;
}

修改CMakeLists.txt:

CMakeLists.txt
cmake_minimum_required (VERSION 2.8)
project (demo)
aux_source_directory(. SRC_LIST)
add_executable(main ${SRC_LIST})

使用aux_source_directory把当前目录下的源文件存列表存放到变量SRC_LIST里;

然后在add_executable里调用SRC_LIST(注意调用变量时的写法)。

3.1.2.3 运行查看

再次执行cmake和make,并运行main:

可以看到运行成功了。

aux_source_directory()也存在弊端,它会把指定目录下的所有源文件都加进来,可能会加入一些我们不需要的文件,此时我们可以使用set命令去新建变量来存放需要的源文件,如下:

cmake_minimum_required (VERSION 2.8)
project (demo)
set( SRC_LIST
 ./main.c
 ./testFunc1.c
 ./testFunc.c)
add_executable(main ${SRC_LIST})

3.2 在不同目录下有多个源文件

一般来说,当程序文件比较多时,我们会进行分类管理,把代码根据功能放在不同的目录下,这样方便查找。那么这种情况下如何编写CMakeLists.txt呢?

3.2.1 项目结构

我们把之前的源文件整理一下(新建2个目录test_func和test_func1):

rm -rf CMakeFiles CMakeCache.txt cmake_install.cmake main Makefile

整理好后整体文件结构如下:

把之前的testFunc.c和testFunc.h放到test_func目录下,testFunc1.c和testFunc1.h则放到test_func1目录下。

3.2.2 示例源码

其中,CMakeLists.txt和main.c在同一目录下,内容修改成如下所示:

cmake_minimum_required (VERSION 2.8)
project (demo)
include_directories (test_func test_func1)
aux_source_directory (test_func SRC_LIST)
aux_source_directory (test_func1 SRC_LIST1)
add_executable (main main.c ${SRC_LIST} ${SRC_LIST1})

这里出现了一个新的命令:include_directories。

该命令是用来向工程添加多个指定头文件的搜索路径,路径之间用空格分隔。

因为main.c里include了testFunc.h和testFunc1.h,如果没有这个命令来指定头文件所在位置,就会无法编译。当然,也可以在main.c里使用include来指定路径,如下

#include "test_func/testFunc.h"

#include "test_func1/testFunc1.h"

只是这种写法不好看。

另外,我们使用了2次aux_source_directory,因为源文件分布在2个目录下,所以添加2次。

3.2.2 运行查看

四 项目级的组织结构

正规一点来说,一般会把源文件放到src目录下,把头文件放入到include文件下,生成的对象文件放入到build目录下,最终输出的可执行程序文件会放到bin目录下,这样整个结构更加清晰。

4.1 项目结构

让我们把前面的文件再次重新组织下:

4.2 示例源码

修改CMakeLists.txt:

CMakeLists.txt
cmake_minimum_required (VERSION 2.8)
project (demo)
add_subdirectory (src)

add_subdirectory:这个语句的作用是增加编译子目录。其基本语法格式是:

add_subdirectory(source_dir [binary_dir] [EXCLUDE_FROM_ALL])

一共有三个参数,后两个是可选参数.

source_dir 源代码目录

指定一个包含CMakeLists.txt和代码文件所在的目录,该目录可以是绝对路径,也可以是相对路径,对于后者相对路径的起点是CMAKE_CURRENT_SOURCE_DIR。此外,如果子目录再次包含的CMakeLists.txt,则将继续处理里层的CMakeLists.txt,而不是继续处理当前源代码。

binary_dir 二进制代码目录

这个目录是可选的,如果指定,cmake命令执行后的输出文件将会存放在此处,若没有指定,默认情况等于source_dir没有进行相对路径计算前的路径,也就是CMAKE_BINARY_DIR。

EXCLUDE_FROM_ALL标记

这个标志是可选的,如果传递了该参数表示新增加的子目录将会排除在ALL目录之外(可能是make系统中的make all?),表示这个目录将从IDE的工程中排除。用户必须显式在子文件这个编译目标(手动cmake之类的)。指定了这个文件夹,表示这个文件夹是独立于源工程的,这些函数是有用但是不是必要的,比如说我们一系列的例子。

add_subdirectory 这个命令用于添加源文件子目录,同时还可以指定中间二进制和目标二进制的生成路径。EXCLUDE_FROM_ALL将会将这个目录从编译中排除,如工程的例子需要等待其他编译完成后再进行单独的编译。通常子目录应该包含自己的project()命令,这样以来整个编译命令将会产生各自的目标文件。如果把CMakeLists.txt与VS IDE比较,总的CMakeLists.txt就相当于解决方案,子CMakeLists.txt就相当于在解决方案下的工程文件。还有一个需要注意的是,如果编译父CMakeLists时依赖了子CMakeLists.txt中的源文件,那么该标志将会被覆盖(也就是也会处理),以满足编译任务。

这里指定src目录下存放了源文件,当执行cmake时,就会进入src目录下去找src目录下的CMakeLists.txt,所以在src目录下也建立一个CMakeLists.txt,内容如下:

src/CMakeLists.txt

aux_source_directory (. SRC_LIST)
include_directories (../include)
add_executable (main ${SRC_LIST})
set (EXECUTABLE_OUTPUT_PATH ${PROJECT_SOURCE_DIR}/bin)

这里的set其实是和前面的一样,只是EXECUTABLE_OUTPUT_PATH是个系统自带的预定义变量,其意义如下:

EXECUTABLE_OUTPUT_PATH :目标二进制可执行文件的存放位置

PROJECT_SOURCE_DIR:工程的根目录

所以,这里set的意思是把存放elf文件的位置设置为工程根目录下的bin目录。(cmake有很多预定义变量,详细的可以网上搜索一下)

添加好以上这2个CMakeLists.txt后,整体文件结构如下:

4.3 运行查看

下面来运行cmake,不过这次先让我们切到build目录下:

cd build
cmake ..
make

这样Makefile会在build目录下生成,二进制程序会在bin目录下生成,然后运行可执行程序:

cd ../bin

./main

这里解释一下为什么在build目录下运行cmake?

还记得在第一个例子里我让你着重看一下cmake和make之后会生成什么文件吗?这个过程中会生成很多文件,但是可惜的是跟我们的运行并没有什么关系,因此,如果能把编译隔离在某个文件夹,这样cmake的时候所有的中间文件都将在这个目录下生成,删除的时候也很好删除,非常方便。如果不这样做,cmake运行时生成的附带文件就会跟源码文件混在一起,这样会对程序的目录结构造成污染。

另外一种写法:

前面的工程使用了2个CMakeLists.txt,最外层的CMakeLists.txt用于掌控全局,使用add_subdirectory来控制其它目录下的CMakeLists.txt的运行。

上面的例子也可以只使用一个CMakeLists.txt,把最外层的CMakeLists.txt内容改成如下

CMakeLists.txt
cmake_minimum_required (VERSION 2.8)
project (demo)
set (EXECUTABLE_OUTPUT_PATH ${PROJECT_SOURCE_DIR}/bin)
aux_source_directory (src SRC_LIST)
include_directories (include)
add_executable (main ${SRC_LIST})

同时,还要把src目录下的CMakeLists.txt删除。

然后正常编译运行就可以。

五 动态库和静态库的编译控制

有时只需要编译出动态库和静态库,然后等着让其它程序去使用。让我们看下这种情况该如何使用cmake。

关于什么是静态库和动态库以及如何使用它们,请参见我的另一篇博客【C++】静态库与动态库的生成与使用介绍

5.1 生成库文件

5.1.1 项目结构

首先按照如下重新组织文件,只留下testFunc.h和TestFunc.c

我们会在build目录下运行cmake,并把生成的库文件存放到lib目录下。

5.1.2 示例源码

CMakeLists.txt

cmake_minimum_required (VERSION 3.5)
project (demo)
set (SRC_LIST ${PROJECT_SOURCE_DIR}/testFunc/testFunc.c)
add_library (testFunc_shared SHARED ${SRC_LIST})
add_library (testFunc_static STATIC ${SRC_LIST})
set_target_properties (testFunc_shared PROPERTIES OUTPUT_NAME "testFunc")
set_target_properties (testFunc_static PROPERTIES OUTPUT_NAME "testFunc")
set (LIBRARY_OUTPUT_PATH ${PROJECT_SOURCE_DIR}/lib)

这里又出现了新的命令和预定义变量:

add_library: 生成动态库或静态库(第1个参数指定库的名字;第2个参数决定是动态还是静态,如果没有就默认静态;第3个参数指定生成库的源文件)

set_target_properties: 设置最终生成的库的名称,还有其它功能,如设置库的版本号等

LIBRARY_OUTPUT_PATH: 库文件的默认输出路径,这里设置为工程目录下的lib目录

PS:前面使用set_target_properties重新定义了库的输出名称,如果不使用set_target_properties也可以,那么库的名称就是add_library里定义的名称,只是连续2次使用add_library指定库名称时(第一个参数),这个名称不能相同,而set_target_properties可以把名称设置为相同,只是最终生成的库文件后缀不同(一个是.so,一个是.a),这样相对来说会好看点。

5.1.3 运行查看

cd build/
cmake ..
make
cd ../lib/
ls

5.2 链接库文件

既然我们已经生成了库,那么就进行链接测试下。

5.2.1 项目结构

重新建一个工程目录,然后把上节生成的库拷贝过来,然后在在工程目录下新建src目录和bin目录,在src目录下添加一个main.c,整体结构如下:

5.2.2 示例源码

main.c

#include <stdio.h>
#include "testFunc.h"
int main(void)
{
    func(100);
    
    return 0;
}

CMakeLists.txt

cmake_minimum_required (VERSION 3.5)
project (demo)
set (EXECUTABLE_OUTPUT_PATH ${PROJECT_SOURCE_DIR}/bin)
set (SRC_LIST ${PROJECT_SOURCE_DIR}/src/main.c)
# find testFunc.h
include_directories (${PROJECT_SOURCE_DIR}/testFunc/inc)
find_library(TESTFUNC_LIB testFunc HINTS ${PROJECT_SOURCE_DIR}/testFunc/lib)
add_executable (main ${SRC_LIST})
target_link_libraries (main ${TESTFUNC_LIB})

这里出现2个新的命令,

find_library: 在指定目录下查找指定库,并把库的绝对路径存放到变量里,其第一个参数是变量名称,第二个参数是库名称,第三个参数是HINTS,第4个参数是路径,其它用法可以参考cmake文档

target_link_libraries: 把目标文件与库文件进行链接

使用find_library的好处是在执行cmake …时就会去查找库是否存在,这样可以提前发现错误,不用等到链接时。

5.2.3 运行查看

cd到build目录下,然后运行cmake … && make,最后进入到bin目录下查看,发现main已经生成,运行之:

cd build/
cmake ..
make
cd ../bin/
./main

ps:在lib目录下有testFunc的静态库和动态库,find_library(TESTFUNC_LIB testFunc

…默认是查找动态库,如果想直接指定使用动态库还是静态库,可以写成find_library(TESTFUNC_LIB

libtestFunc.so …或者find_library(TESTFUNC_LIB libtestFunc.a …

ps: 查看elf文件使用了哪些库,可以使用readelf -d ./xx来查看 例:readelf -d ./main

六 条件编译

有时编译程序时想添加一些编译选项,如-Wall,-std=c++11等,就可以使用add_compile_options来进行操作。

这里以一个简单程序来做演示。

6.1 简单程序

6.1.1 项目结构

6.1.2 示例代码

main.cpp

#include <iostream>
int main(void)
{
    auto data = 100;
    std::cout << "data: " << data << "\n";
    return 0;
}
CMakeLists.txt
cmake_minimum_required (VERSION 2.8)
project (demo)
set (EXECUTABLE_OUTPUT_PATH ${PROJECT_SOURCE_DIR}/bin)
add_compile_options(-std=c++11 -Wall) 
add_executable(main main.cpp)

6.1.3 运行查看

然后cd到build目录下,执行cmake … && make命令,就可以在bin目录下得到main的可执行文件

6.2 添加编译选项

有时希望在编译代码时只编译一些指定的源码,可以使用cmake的option命令,主要遇到的情况分为2种:

本来要生成多个bin或库文件,现在只想生成部分指定的bin或库文件

对于同一个bin文件,只想编译其中部分代码(使用宏来控制)

6.2.1 生成部分指定bin或库文件

6.2.1.1 项目结构

假设我们现在的工程会生成2个bin文件,main1和main2,项目结构如下:

6.2.1.2 示例源码

CMakeLists.txt

cmake_minimum_required(VERSION 3.5)
project(demo)
option(MYDEBUG "enable debug compilation" OFF)
set (EXECUTABLE_OUTPUT_PATH ${PROJECT_SOURCE_DIR}/bin)
add_subdirectory(src)

这里使用了option命令,其第一个参数是这个option的名字,第二个参数是字符串,用来描述这个option是来干嘛的,第三个是option的值,ON或OFF,也可以不写,不写就是默认OFF。

然后编写src目录下的CMakeLists.txt,如下:

src/CMakeLists.txt

cmake_minimum_required (VERSION 3.5)
add_executable(main1 main1.c)
if (MYDEBUG)
    add_executable(main2 main2.c)
else()
    message(STATUS "Currently is not in debug mode")    
endif()

注意,这里使用了if-else来根据option来决定是否编译main2.c,其中main1.c和main2.c的内容如下:

main1.c

// main1.c
#include <stdio.h>
int main(void)
{
    printf("hello, this main1\n");
    
    return 0;
}

main2.c

// main2.c
#include <stdio.h>
int main(void)
{
    printf("hello, this main2\n");
    
    return 0;
}

6.2.1.3 运行查看

然后cd到build目录下输入cmake … && make就可以只编译出main1,如果想编译出main2,就把MYDEBUG设置为ON,再次输入cmake … && make重新编译。

每次想改变MYDEBUG时都需要去修改CMakeLists.txt,有点麻烦,其实可以通过cmake的命令行去操作,例如我们想把MYDEBUG设置为OFF,先cd到build目录,然后输入cmake … -DMYDEBUG=ON,这样就可以编译出main1和main2 (在bin目录下)

6.2.2 编译部分代码

假设我们有个main.c,其内容如下:

main.c

#include <stdio.h>
int main(void)
{
#ifdef WWW1
    printf("hello world1\n");
#endif    
#ifdef WWW2     
    printf("hello world2\n");
#endif
    return 0;
}

可以通过定义宏来控制打印的信息,我们CMakeLists.txt内容如下:

cmake_minimum_required(VERSION 3.5)
project(demo)
set (EXECUTABLE_OUTPUT_PATH ${PROJECT_SOURCE_DIR}/bin)
option(WWW1 "print one message" OFF)
option(WWW2 "print another message" OFF)
if (WWW1)
    add_definitions(-DWWW1)
endif()
if (WWW2)
    add_definitions(-DWWW2)
endif()
add_executable(main main.c)

这里把option的名字保持和main.c里的宏名称一致,这样更加直观,也可以选择不同的名字。通过与add_definitions()的配合,就可以控制单个bin文件的打印输出了。

整体工程结构如下:

cd到build目录下执行cmake … && make,然后到bin目录下执行./main,可以看到打印为空,

接着分别按照下面指令去执行,然后查看打印效果,

cmake … -DWWW1=ON -DWWW2=OFF && make

cmake … -DWWW1=OFF -DWWW2=ON && make

cmake … -DWWW1=ON -DWWW2=ON && make

这里有个小坑要注意下:假设有2个options叫A和B,先调用cmake设置了A,下次再调用cmake去设置B,如果没有删除上次执行cmake时产生的缓存文件,那么这次虽然没设置A,也会默认使用A上次的option值。

所以如果option有变化,要么删除上次执行cmake时产生的缓存文件,要么把所有的option都显式的指定其值。

总结

以上是自己学习CMake的一点学习记录,通过简单的例子让大家入门CMake,学习的同时也阅读了很多网友的博客。CMake的知识点还有很多,具体详情可以在网上搜索。总之,CMake可以让我们不用去编写复杂的Makefile,并且跨平台,是个非常强大并值得一学的工具。

————————————————

版权声明:本文为优快云博主「隐居的遮天恶鬼」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。

原文链接:https://blog.youkuaiyun.com/weixin_43717839/article/details/128032486

<think>首先,用户的问题是:“我想查找CMake使用教程请问CMake使用教程|CMake入门指南|CMake配置详解”。这是一个查找CMake教程的请求。在系统级指令中,我需要:-所有行内数学表达式使用$...$格式(但在这个上下文中,CMake教程可能不涉及数学,所以可能不需要)。-独立公式使用$$...$$格式,并单独成段(同样,可能不适用)。-LaTeX语法正确。-使用中文回答。-生成相关问题。-回答中引用的段落末尾自然地添加引用标识,例如[^1].用户提供了站内引用:-引用[1]:讨论了CMake_SOURCE_DIR和基本构建步骤。-引用[2]:是关于CMake入门教程,包括Helloworld示例和命令详解。-引用[3]:提到了CMake帮助手册的使用。用户说:“上述引用仅供参考,并不是用户真正的需求,请尽可能多的参考用户上一次的问题和你的回答。”但在这个对话中,这是第一个用户消息,所以没有“上一次的问题”。系统指令提到“参考用户上一次的问题和你的回答”,但这里没有历史。所以,我应该直接回应用户的查询。关键点是:用户想要CMake使用教程。所以,我需要提供CMake入门指南、配置详解的摘要或指导。响应结构:-基于系统指令,回答应结构清晰,帮助用户逐步解决问题。-使用中文。-在末尾生成相关问题。-如果有引用,末尾添加引用标识;但由于用户说引用仅供参考,我应该主要基于自己的知识提供可靠信息,但可以参考提供的引用。制定响应:1.**介绍CMake**:简述CMake是什么,为什么有用。2.**入门步骤**:提供基本的CMake使用教程,类似于引用[2]中的内容。3.**配置详解**:解释CMakeLists.txt的基本结构、常用命令如project(),add_executable(),等。4.**构建过程**:描述如何创建构建目录、运行cmake、make等。5.**参考提供的引用**:自然地融入引用。例如,在描述命令时,可以提到引用[2]中的例子。生成相关问题:在末尾,创建几个相关问题,比如基于教程的扩展问题。确保LaTeX:CMake教程不涉及数学,所以可能不需要数学表达式。如果出现变量等,可能需要使用$...$,但这里不太可能。最终响应结构:-开头解释CMake。-逐步讲解入门教程(HelloWorld示例)。-详细解释配置(CMakeLists.txt中的命令)。-总结如何编译安装。-添加引用标识,如果使用了参考信息。-§§相关问题§§部分:列出相关问题。问题用中文。相关问题示例:1.CMake如何管理多文件项目?2.CMake的缓存机制是什么?3.如何添加外部库依赖?引用:用户提供了引用标签[^1],[^2],[^3],所以如果我引用,就用这些。例如:在描述project()命令时,可以引用引用[2]。保持自然。</think> ### CMake 入门教程和配置详解 CMake是一个跨平台的构建工具,广泛用于管理C++等语言的软件编译过程。它能生成标准的构建文件(如Makefile或Visual Studio项目),简化了从源代码到可执行文件的转换。本教程将逐步介绍CMake的基本使用方法,从最简单的Hello World项目开始,扩展到配置详解。内容基于通用知识和最佳实践,同时参考您提供的引用信息[^1][^2][^3]进行补充。 #### 1. **CMake 基础入门:Hello World 项目** 这是最基础的CMake项目,适合学习基本命令和构建流程。 - **步骤1: 创建项目文件** 在您的项目根目录下,创建一个名为`CMakeLists.txt`的文件。这个文件定义了项目的构建规则。以下是一个Hello World示例的完整内容(参考引用[^2]): ```cmake # 指定最小CMake版本,确保兼容性(建议至少3.10) cmake_minimum_required(VERSION 3.10) # 设置项目名称(如“HelloWorld”) project(HelloWorld) # 创建可执行文件:目标名称为HelloWorld,源码文件为helloworld.cpp add_executable(HelloWorld helloworld.cpp) ``` 同时,创建一个源码文件`helloworld.cpp`: ```cpp #include <iostream> int main() { std::cout << "Hello, CMake World!" << std::endl; return 0; } ``` - **步骤2: 构建项目** 在命令行中,执行以下命令(参考引用[^1][^2])。这包括: - 创建并进入`build`目录(隔离构建文件,保持源码整洁)。 - 运行`cmake`生成构建文件(如Makefile)。 - 编译并运行。 ```bash # 创建build目录(推荐方式) mkdir build cd build # 使用cmake生成构建文件(.. 表示上一级目录的CMakeLists.txt) cmake .. # 编译项目(在Linux/Unix使用make,Windows会生成VS工程) make # 运行可执行文件 ./HelloWorld ``` 输出应该为:`Hello, CMake World!` **注意**: 在Windows上,`cmake ..`会生成Visual Studio解决方案,可使用`cmake --build .`代替`make`。 这些步骤展示了CMake的最小工作流程,其中`cmake_minimum_required()`指定版本,`project()`定义项目属性,`add_executable()`添加编译目标[^2]。 #### 2. **CMake 配置详解:常用命令和功能** 理解CMakeLists.txt的配置是关键。以下是核心命令的解释和使用场景(参考引用[^2][^3])。 - **基本命令详解**: - `cmake_minimum_required(VERSION x.y)`: 设置最低CMake版本,避免兼容性问题(如VERSION 3.10)。必须放在文件开头。 - `project(项目名 [VERSION 版本号] [LANGUAGES CXX])`: 定义项目名称,可添加版本和语言(CXX表示C++)。这会设置变量如`PROJECT_NAME`,在后续配置中可用。 - `add_executable(target名 源码文件)`: 创建一个可执行文件目标。例如,`add_executable(MyApp main.cpp)`。如果源码文件有多个,直接列出(如`main.cpp util.cpp`)。 - `add_library(target名 STATIC/SHARED 源码文件)`: 创建静态库或动态库(如`add_library(mylib STATIC lib.cpp)`)。 - **管理多文件项目**(参考引用[^1]): 当项目包含多个源文件时,使用`file(GLOB ...)`或手动列出文件: ```cmake cmake_minimum_required(VERSION 3.10) project(MultiFileExample) # 方式1: 手动添加所有源码文件 add_executable(App main.cpp file1.cpp file2.cpp) # 方式2: 使用file命令自动搜集 file(GLOB SOURCES "src/*.cpp") add_executable(App ${SOURCES}) ``` **注意**: 使用`file(GLOB)`时需谨慎,因为它可能导致构建不稳定(新增文件时需重新运行cmake)。 - **添加编译器选项和依赖**: - `add_compile_options(...)`: 添加编译器标志(如`add_compile_options(-Wall -O2)`开启警告和优化)。查看帮助手册:`cmake --help-commands add_compile_options`[^3]。 - `find_package(库名 REQUIRED)`: 自动查找系统依赖库(如OpenCV),需配合`target_link_libraries()`。 - `target_link_libraries(target名 库名)`: 链接库到目标(如`target_link_libraries(MyApp mylib)`)。 - **变量和路径设置**: - CMake定义了内置变量,如`CMAKE_SOURCE_DIR`(项目根目录)、`CMAKE_BINARY_DIR`(构建目录)。例如,`CMAKE_SOURCE_DIR`指向定义了顶级CMakeLists.txt的文件夹[^1]。 - 自定义变量:`set(变量名 值)`,如`set(COMPILE_FLAGS "-std=c++11")`。 #### 3. **进阶功能:安装和自定义目标** 在入门后,扩展功能能提升项目管理: - **安装程序**: 在CMakeLists.txt中添加: ```cmake # 安装可执行文件到系统目录(默认/usr/local/bin) install(TARGETS HelloWorld DESTINATION bin) ``` 运行安装:在构建目录执行`make install`(或Windows的`cmake --build . --target install`)[^1]。 - **使用帮助手册**: CMake提供了完整的命令行帮助: - `cmake --help`: 查看基本用法。 - `cmake --help-command <命令>`: 获取命令详情(如`cmake --help-command add_executable`[^3])。 - `cmake --help-variable <变量名>`: 查看变量解释。 - **跨平台提示**: - 在Windows上,cmake可能生成Visual Studio项目;在macOS,使用Xcode工具链。统一命令行:`cmake -G "Generator Name" ..`(如`-G "Visual Studio 17 2022"`)。 #### 4. **总结和推荐资源** 这个教程覆盖了从入门到配置的核心内容。实际项目中,建议: - 从简单项目开始练习。 - 使用官方文档或在线教程(如CMake官网)深化学习(参考引用[^2][^3])。 - 在构建时始终使用隔离的`build`目录(最佳实践[^1])。 如果您有特定项目问题(如添加外部库),请提供更多细节!我会进一步协助。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值