tensorflow之dropout

本文深入解析TensorFlow中tf.nn.dropout函数的作用与使用方法,旨在防止神经网络训练过程中的过拟合现象。通过随机丢弃部分神经元,提高模型的泛化能力。详细介绍了函数参数,如保留概率keep_prob的设定,以及在训练与测试阶段的不同应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 转自:

https://blog.youkuaiyun.com/yangfengling1023/article/details/82911306

tf.nn.dropout()是tensorflow里面为了防止或减轻过拟合而使用的函数,它一般用在全连接层

Dropout就是在不同的训练过程中随机扔掉一部分神经元。也就是让某个神经元的激活值以一定的概率p,让其停止工作,这次训练过程中不更新权值,也不参加神经网络的计算。但是它的权重得保留下来(只是暂时不更新而已),因为下次样本输入时它可能又得工作了
 

tf.nn.dropout函数说明

tf.nn.dropout(     x,     keep_prob,        noise_shape=None,      seed=None,     name=None )

参数说明:

x:指输入,输入tensor

keep_prob: float类型,每个元素被保留下来的概率,设置神经元被选中的概率,在初始化时keep_prob是一个占位符, keep_prob = tf.placeholder(tf.float32) 。tensorflow在run时设置keep_prob具体的值,例如keep_prob: 0.5

noise_shape  : 一个1维的int32张量,代表了随机产生“保留/丢弃”标志的shape。

seed : 整形变量,随机数种子。

name:指定该操作的名字

 

dropout必须设置概率keep_prob,并且keep_prob也是一个占位符,跟输入是一样的

keep_prob = tf.placeholder(tf.float32)

train的时候才是dropout起作用的时候,test的时候不应该让dropout起作用
 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值