Fib 性质 Gcd(f[n],f[m]) = f(gcd(n,m))

本文探讨了斐波那契数列的几个重要性质,包括互质性、线性组合公式以及整除性,并通过欧几里得算法证明了这些性质。最后给出了斐波那契数列的最大公约数的特性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

a) gcd(fn, fn-1) = 1, for all n 

b) fm+n = fm+1 fn + fm fn-1 
c) if m divides n, then fm divides fn 
and the ever important Euclidean Algorithm which states: 

if n=qm+r, then gcd(n,m)=gcd(m,r). For such n,m we have

gcd(fm,fn) = gcd(fm,fqm+r) = gcd(fm,fqm+1fr+fqmfr-1) = gcd(fm,fqm+1fr) = gcd(fm,fr)

gcd(fn,fm)=gcd(fm,fr)


性质a,更相减损法即可证。

性质b,展开即显然。

由性质b和性质a,即可证得gcd(fm,fn) = fgcd(m,n).

# U501347 「Stoi2025」爱的飞行日记 ## 题目背景 ![](bilibili:BV1fx411N7bU?page=125) ## 题目描述 $t$ 组询问,每次询问给定正整数 $n,m$,计算 $$\prod_{a_1=1}^{m}\prod_{a_2=1}^{m}\cdots\prod_{a_n=1}^{m}\operatorname{lcm}(f_{a_1},f_{a_2},\dots,f_{a_n})\bmod{37426667}$$ 的值。其中 $f_i$ 是斐波那契数,满足 $f_1=f_2=1$,且 $f_i=f_{i-1}+f_{i-2},\forall n\ge3$。 ## 输入格式 第一行输入一个正整数 $t$ 表示询问组数。 接下来 $t$ 行,每行两个正整数 $n,m$ 表示一次询问。 ## 输出格式 每次询问输出一行一个整数表示答案。 ## 输入输出样例 #1 ### 输入 #1 ``` 2 1 3 2 3 ``` ### 输出 #1 ``` 2 32 ``` ## 说明/提示 #### 样例解释 对于第一组询问,有答案为 $f_1f_2f_3=1\times1\times2=2$。 对于第二组询问,当 $a_1,a_2\in\{1,2\}$ 时 $\operatorname{lcm}(f_{a_1},f_{a_2})=1$,否则 $\operatorname{lcm}(f_{a_1},f_{a_2})=2$。故答案为 $2^5=32$。 #### 数据范围与限制 **本题采用捆绑测试,各 Subtask 的限制与分值如下。** | Subtask No. | $t\le$ | $n\le$ | $m\le$ | 分值 | | :-: | :-: | :-: | :-: | :-: | | $1$ | $1$ | $2$ | $2 \times 10^3$ | $13$ | | $2$ | $5$ | $2 \times 10^5$ | $2 \times 10^5$ | $24$ | | $3$ | $5$ | $2 \times 10^7$ | $2 \times 10^7$ | $36$ | | $4$ | $300$ | $2 \times 10^{17}$ | $2 \times 10^7$ | $27$ | 对于所有数据,满足 $1 \le t \le 300, 1 \le n \le 2 \times 10^{17}, 1 \le m \le 2 \times 10^7$。 #include<bits/stdc++.h> #define md 37426667 #define int unsigned long long using namespace std; inline int in() { int k=0,f=1; char c=getchar(); while(c<'0'||c>'9') { if(c=='-') f=-1; c=getchar(); } while(c>='0'&&c<='9') k=k*10+c-'0',c=getchar(); return k*f; } inline int out(int a) { if(a<0) putchar('-'),a=-a; if(a<10) putchar(a+'0'); else out(a/10),putchar(a%10+'0'); return 0; } inline int gcd(int a,int b) { while(b){ int t=b; b=a%b; a=t; } return a; } int lcm(int a,int b) { return (a/gcd(a,b))*b%md; } int fib[20000005]; main() { int t=in(); fib[1]=fib[2]=1; for(int i=3; i<=20000000;i++) fib[i]=(fib[i-1]+fib[i-2])%md; while(t--) { int n=in(),m=in(); int ans=1; if(n==1) for(int i=1; i<=m; i++) ans=(ans*fib[i])%md; else if(n==2) { for(int xx=1; xx<=m; xx++) { for(int yy=1; yy<=m; yy++) { ans=(ans*lcm(fib[xx],fib[yy]))%md; } } } out(ans%md); } }
03-16
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值