[kuangbin带你飞]专题一 简单搜索 D-Fliptile poj3279

本文探讨了一种解决翻转游戏板问题的算法,通过字典序最小化原则选择最佳翻转策略,确保所有游戏板块的白色面朝上。文章详细介绍了算法实现过程,包括状态转移、翻转操作及检测函数的使用。

刚开始做题的时候只想着从第二行开始根据第一行状态进行判断,忘记了第一行的2^n种可能
然后那个字典序要求的是敲击最小,所以设置的a是对应的踩。。不是那个块是0还是1,注意一下,题意理解问题。
然后需要注意的是fan和bj数组每次要初始化,bj忘了找了半个小时嘤嘤嘤。
还有一个小问题,m只需要在jiance里面判定,刚开始的时候想复杂了,以为在fanzhuan()里面,其他的根据前一行,m根据本行的情况判断,(没必要,但是我自己认为也不是错的,,,然鹅这个是错的,暂时还没弄明白原因,有空再看一下原因)

#include<stdio.h>
#include<string.h>
int m,n;
bool ans;
int grid[16][16];//最终目的是要让所有的白色面朝上,0代表white,1代表black
int temp[16][16];
int fan[16][16];
int bj[16];
int hang,a;
void fanzhuan(int x);
void zhixing(int x,int y);
void yihangjiance()
{
    for(int i=1;i<=n;i++)
    {
        if(grid[1][i]==1)
            return;
    }
    ans=1;
}
void init()
{
    for(int i=1;i<=m;i++)
    {
        for(int j=1;j<=n;j++)
            temp[i][j]=grid[i][j];
    }
}
void huifu()
{
    for(int i=1;i<=m;i++)
    {
        for(int j=1;j<=n;j++)
            grid[i][j]=temp[i][j];
    }
}
void bian(int x,int y)
{
    if(grid[x][y]==1) grid[x][y]=0;
    else grid[x][y]=1;
}
void gouzao()
{
    int l=1<<n;
    for(int i=0;i<l;i++)
    {
        huifu();
        hang=i;
        memset(fan,0,sizeof(fan));

        for(int j=1;j<=n;j++)//注意这个字典序指的是输出的字典序,就是尽可能的不去踩、
        {
            a=hang%2;
            hang=hang/2;
            if(a)
            {
                zhixing(1,j);
                fan[1][j]=1;//注意执行函数里面没修改fan
            }
        }
        if(m==1)
        {
           yihangjiance();
        }
        else fanzhuan(2);
        if(ans>0) return;
    }
}

bool jiance(int x)
{
    for(int i=1;i<x;i++)//不含自己,前面的都不会再变了
    {
        for(int j=1;j<=n;j++)
            if(grid[i][j]==1) return false;
    }
    if(x==m)
    {
        for(int j=1;j<=n;j++)
            if(grid[m][j]==1) return false;
    }
    return true;
}
void zhixing(int x,int y)
{
    if(x-1>=1) bian(x-1,y);
    if(y-1>=1) bian(x,y-1);
    bian(x,y);
    if(x+1<=m) bian(x+1,y);
    if(y+1<=n) bian(x,y+1);
}
void fanzhuan(int x)
{
    memset(bj,0,sizeof(bj));
    if(x==m+1)
    {
        ans=true;
        return;
    }
    /*if(x==m)
    {
            for(int i=1;i<=n;i++)
        {
            if(grid[x][i]==1)

            {
                zhixing(x,i);
                bj[i]=1;
            }
        }
    }
    else*/
    //printf("grid 11%d\n",grid[1][1]);
    for(int i=1;i<=n;i++)
    {
        if(grid[x-1][i]==1)
            {
                //printf("%d %d\n",x-1,i);
                zhixing(x,i);
                bj[i]=1;
            }
    }
    if(jiance(x)==true)
    {
        for(int i=1;i<=n;i++)
        {
            if(bj[i]) fan[x][i]=1;
        }
        memset(bj,0,sizeof(bj));
        fanzhuan(x+1);
    }
}
int main()
{
    ans=false;
    memset(bj,0,sizeof(bj));
    memset(fan,0,sizeof(fan));
    memset(grid,0,sizeof(grid));
    scanf("%d%d",&m,&n);
    for(int i=1;i<=m;i++)
    {
        for(int j=1;j<=n;j++)
            scanf("%d",&grid[i][j]);
    }
    init();
    gouzao();
    if(ans)
    {
        for(int i=1;i<=m;i++)
        {
            for(int j=1;j<=n;j++)
            {
                printf("%d ",fan[i][j]);
            }
            printf("\n");
        }
    }
    else{
        printf("IMPOSSIBLE");
    }
    return 0;
}

基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构与权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络与滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度与鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析与仿真验证相结合。
### 关于 kuangbin ACM 算法竞赛培训计划 #### 数论基础专题介绍 “kuangbin专题十四涵盖了数论基础知识的学习,旨在帮助参赛者掌握算法竞赛中常用的数论概念和技术。该系列不仅提供了丰富的理论讲解,还推荐了本详细的书籍《算法竞赛中的初等数论》,这本书包含了ACM、OI以及MO所需的基础到高级的数论知识点[^1]。 #### 并查集应用实例 在另个具体的例子中,“kuangbin”的第五个专题聚焦于并查集的应用。通过解决实际问题如病毒感染案例分析来加深理解。在这个场景下,给定组学生及其所属的不同社团关系图,目标是从这些信息出发找出所有可能被传染的学生数目。此过程涉及到了如何高效管理和查询集合成员之间的连通性问题[^2]。 #### 搜索技巧提升指南 对于简单搜索题目而言,在为期约两周的时间里完成了这部分内容的学习;尽管看似容易,但对于更复杂的状况比如状态压缩或是路径重建等问题,则建议进步加强训练以提高解题能力[^3]。 ```python def find_parent(parent, i): if parent[i] == i: return i return find_parent(parent, parent[i]) def union(parent, rank, x, y): rootX = find_parent(parent, x) rootY = find_parent(parent, y) if rootX != rootY: if rank[rootX] < rank[rootY]: parent[rootX] = rootY elif rank[rootX] > rank[rootY]: parent[rootY] = rootX else : parent[rootY] = rootX rank[rootX] += 1 # Example usage of Union-Find algorithm to solve the virus spread problem. ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值