#include <iostream>
using namespace std;
int GCD( int m, int n ) // greatest common divisor
{
if ( m < n )
{
swap( m, n );
}
int r = m % n;
while ( r != 0 )
{
m = n;
n = r;
r = m % n;
}
return n;
}
int main()
{
int lcm(1); // least common multiple
for ( int i = 2; i <= 20; ++i )
{
lcm = i / GCD( i, lcm ) * lcm;
}
cout << lcm << endl;
return 0;
using namespace std;
int GCD( int m, int n ) // greatest common divisor
{
if ( m < n )
{
swap( m, n );
}
int r = m % n;
while ( r != 0 )
{
m = n;
n = r;
r = m % n;
}
return n;
}
int main()
{
int lcm(1); // least common multiple
for ( int i = 2; i <= 20; ++i )
{
lcm = i / GCD( i, lcm ) * lcm;
}
cout << lcm << endl;
return 0;
}
本文详细介绍了如何使用C++编程语言来实现求解两个整数的最大公约数(GCD)和最小公倍数(LCM)。通过迭代过程,实现了高效计算最大公约数,并利用此结果进一步计算最小公倍数。
8495

被折叠的 条评论
为什么被折叠?



