题目来源【Leetcode】
You have a total of n coins that you want to form in a staircase shape, where every k-th row must have exactly k coins.
Given n, find the total number of full staircase rows that can be formed.
n is a non-negative integer and fits within the range of a 32-bit signed integer.
Example 1:
n = 5
The coins can form the following rows:
¤
¤ ¤
¤ ¤Because the 3rd row is incomplete, we return 2.
Example 2:n = 8
The coins can form the following rows:
¤
¤ ¤
¤ ¤ ¤
¤ ¤Because the 4th row is incomplete, we return 3.
这道题用一个公式:(i+1)*i/2 >= n来解,不需要循环;
class Solution {
public:
int arrangeCoins(int n) {
double i = (double)sqrt((long long)2*n+0.25)-0.5;
return (int)i;
}
};
本文介绍了一个有趣的数学问题——如何使用一定数量的硬币形成一个完整的阶梯形状,并给出了一种高效的解决方案。通过一个简单的数学公式 (i+1)*i/2>=n,可以避免循环计算,快速得出可以形成的完整阶梯行数。

314

被折叠的 条评论
为什么被折叠?



