A Knight's Journey
Description

The knight is getting bored of seeing the same black and white squares again and again and has decided to make a journey
around the world. Whenever a knight moves, it is two squares in one direction and one square perpendicular to this. The world of a knight is the chessboard he is living on. Our knight lives on a chessboard that has a smaller area than a regular 8 * 8 board, but it is still rectangular. Can you help this adventurous knight to make travel plans?
Problem
Find a path such that the knight visits every square once. The knight can start and end on any square of the board.
Input
The input begins with a positive integer n in the first line. The following lines contain n test cases. Each test case consists of a single line with two positive integers p and q, such that 1 <= p * q <= 26. This represents a
p * q chessboard, where p describes how many different square numbers 1, . . . , p exist, q describes how many different square letters exist. These are the first q letters of the Latin alphabet: A, . . .
Output
The output for every scenario begins with a line containing "Scenario #i:", where i is the number of the scenario starting at 1. Then print a single line containing the lexicographically first path that visits all squares of the
chessboard with knight moves followed by an empty line. The path should be given on a single line by concatenating the names of the visited squares. Each square name consists of a capital letter followed by a number.
If no such path exist, you should output impossible on a single line.
If no such path exist, you should output impossible on a single line.
Sample Input
3 1 1 2 3 4 3
Sample Output
Scenario #1: A1 Scenario #2: impossible Scenario #3: A1B3C1A2B4C2A3B1C3A4B2C4 附上详细解释: #include <iostream> #include <cstring> #include <cstdio> #include <algorithm> #include <cmath> #include <cstdlib> #include <queue> #include <iomanip> using namespace std; #define maxn 40 struct node{ int x,y; }num[maxn]; int visit[maxn][maxn]; int p,q; int dr[8]= {-1,1,-2,2,-2,2,-1,1};/走的是日字形,并且要按照字典序,这个顺序不能乱改,否则会出错 int dc[8]= {-2,-2,-1,-1,1,1,2,2};//因为是按字典序排序,因为字符的输出是按照纵坐标的位置来输出的,所以我们要把纵坐标从小到大排序,那么第一个得到的必定是字符最小的那个 /********************* A B C D 1 2 3 4 **********************/ bool flag; void dfs(int m,int n,int cur) { if(flag) return;//如果找到我们就要返回,为什么我要讲这一点呢?因为如果这个不写的话,那么flag为1时,将往下继续执行语句,那么//num[cur].x=m;//此时的cur值并未发生变化,而是回到了上一个的dfs去了 // num[cur].y=n//我们所记录的路径就被更新了,得到的答案肯定是错的 if(cur==p*q)//如果所有的点我们都已经遍历过了,自然准备结束了 { num[cur].x=m;//结束时,该点的行 num[cur].y=n;//结束时,该点的列 flag=1;//标记,我们找到了这样的路径 return; } num[cur].x=m;//如果点还未遍历完,我们要把所走过的点的路径记录下来 num[cur].y=n; for(int i=0;i<8;i++) { int r=m+dr[i]; int c=n+dc[i]; if(r>=1 && r<=p && c>=1 && c<=q && visit[r][c]==0) { visit[r][c]=1; dfs(r,c,cur+1); visit[r][c]=0;//因为具体的哪条路能过完全走完我们不确定,那么每条路都要试试,所以我们要进行回溯 } }}int main(){ int t,i,j,k=1; cin>>t; while(t--) { cin>>p>>q; flag=0; memset(visit,0,sizeof(visit)); for(i=1;i<=p;i++) { for(j=1;j<=q;j++) { if(flag) break;//如果搜到了,我们马上跳出循环 visit[i][j]=1;//先标记起点 dfs(i,j,1);//进行搜索,如果搜索结束,进行下一循环 visit[i][j]=0;//回溯 } if(flag) break;//如果搜到了,我们马上跳出循环 } cout<<"Scenario #"<<k++<<":"<<endl; if(!flag) { cout<<"impossible"<<endl; }else{ for(i=1;i<=p*q;i++) { printf("%c%d",num[i].y+'A'-1,num[i].x);//国际象棋是行为数字,列为字母 } cout<<endl; } cout<<endl;//特别是这里有点小坑,容易漏掉 } return 0; }