Get the Source Code Pentaho

了解如何使用项目仓库获取Pentaho开源代码,包括BI平台、设计工作室、报告设计器等项目。通过Subversion进行源代码控制,提供详细的指导和链接。
Get the Source Code

Using the Project Repository

Here you will find the live source control system that holds the Pentaho open source code, available to you with anonymous read access. The projects you can find in this repository are:

  • The Pentaho BI platform, and all projects needed to debug within the PCI
  • The Pentaho Design Studio
  • The Pentaho Report Designer
  • The Pentaho Report Design Wizard
  • Pentaho Data integration (Kettle)
  • Pentaho Report Engine (JFreeReport)

Go to http://mondrian.pentaho.com/documentation/developers_guide.php for instructions on how to get the Mondrian code.

Getting the Source From Subversion

We use Subversion as our source code control system. If you are not familiar with Subversion, check out their web site for details about the system before you dive in here. If you are not familiar with Subversion, but have used CVS, you should have no problem with Subversion, as it is being built as a replacement to CVS, minus CVS's frustrations.

The following URLs are the locations for the various Pentaho projects available in the repository. Following the Subversion standard, each project contains three directories: branches, tags, and trunk.

Trunk - The latest code is in the trunk directory. This is usually the location you want use for development.

Branches - Previously released versions are in subdirectories under the branches directory. This is useful if you are debugging an older released version of the software.

Tags - Tagged versions of previous builds are located here. This is useful if you need the source code for a specific build including the nightly builds.

Note: All of the subversion projects are also available via HTTP. Simply replace svn:// with http:// and you can browse the source tree in your browser. You may also need to use the http protocol if your firewall blocks the svn protocol.

Projects

Platform Projects and Client Tools
svn://source.pentaho.org/svnroot
BI Server, Sample Data and Sample Solutions
svn://source.pentaho.org/svnroot/bi-platform-v2/
BI Server Plug-ins
svn://source.pentaho.org/svnroot/pentaho-solution-plugins/
Legacy (Pre 2.0) BI Server
svn://source.pentaho.org/svnroot/legacy/
Pentaho Open Admin Console
svn://source.pentaho.org/svnroot/pentaho-open-admin-console/
Design Studio
Core: svn://source.pentaho.org/svnroot/pentaho-designstudio-core/
Action Sequence Plugin: http://source.pentaho.org/svnroot/pentaho-actionsequence-plugin/
IDE Windows: svn://source.pentaho.org/svnroot/pentaho-designstudioIDE/
IDE Linux: svn://source.pentaho.org/svnroot/pentaho-designstudioIDE-linux/
IDE Mac: svn://source.pentaho.org/svnroot/pentaho-designstudioIDE-mac/
Report Designer
svn://source.pentaho.org/svnroot/pentaho-reportdesigner/
Pentaho Metadata
Editor: svn://source.pentaho.org/svnroot/pentaho-metadata-editor/
Metadata: svn://source.pentaho.org/svnroot/pentaho-metadata/
Aggregation Designer
svn://source.pentaho.org/svnroot/pentaho-aggdesigner/
Pentaho Data Integration (Kettle)
svn://source.pentaho.org/svnkettleroot/
Pentaho Report Engine (JFreeReport)
svn://source.pentaho.org/pentaho-reporting/

Developing in the Pentaho Projects

The Pentaho dev team uses Eclipse as their IDE, with the Subclipse plug-in for Eclipse to manage the projects out of the Subversion repository. 

To learn more about developing in these projects most effectively using Eclipse, go to http://wiki.pentaho.com/display/ServerDoc2x/Building+and+Debugging+Pentaho+with+Eclipse

We are always looking for ways to refine the development process and make it easier for our community to contribute. Please send suggestions, ideas, and solutions to any major annoyances to communityconnection@pentaho.com.


http://community.pentaho.com/getthecode/

内容概要:本文系统介绍了算术优化算法(AOA)的基本原理、核心思想及Python实现方法,并通过图像分割的实际案例展示了其应用价值。AOA是一种基于种群的元启发式算法,其核心思想来源于四则运算,利用乘除运算进行全局勘探,加减运算进行局部开发,通过数学优化器加速函数(MOA)和数学优化概率(MOP)动态控制搜索过程,在全局探索与局部开发之间实现平衡。文章详细解析了算法的初始化、勘探与开发阶段的更新策略,并提供了完整的Python代码实现,结合Rastrigin函数进行测试验证。进一步地,以Flask框架搭建前后端分离系统,将AOA应用于图像分割任务,展示了其在实际工程中的可行性与高效性。最后,通过收敛速度、寻优精度等指标评估算法性能,并提出自适应参数调整、模型优化和并行计算等改进策略。; 适合人群:具备一定Python编程基础和优化算法基础知识的高校学生、科研人员及工程技术人员,尤其适合从事人工智能、图像处理、智能优化等领域的从业者;; 使用场景及目标:①理解元启发式算法的设计思想与实现机制;②掌握AOA在函数优化、图像分割等实际问题中的建模与求解方法;③学习如何将优化算法集成到Web系统中实现工程化应用;④为算法性能评估与改进提供实践参考; 阅读建议:建议读者结合代码逐行调试,深入理解算法流程中MOA与MOP的作用机制,尝试在不同测试函数上运行算法以观察性能差异,并可进一步扩展图像分割模块,引入更复杂的预处理或后处理技术以提升分割效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值