Get the Source Code Pentaho

了解如何使用项目仓库获取Pentaho开源代码,包括BI平台、设计工作室、报告设计器等项目。通过Subversion进行源代码控制,提供详细的指导和链接。
Get the Source Code

Using the Project Repository

Here you will find the live source control system that holds the Pentaho open source code, available to you with anonymous read access. The projects you can find in this repository are:

  • The Pentaho BI platform, and all projects needed to debug within the PCI
  • The Pentaho Design Studio
  • The Pentaho Report Designer
  • The Pentaho Report Design Wizard
  • Pentaho Data integration (Kettle)
  • Pentaho Report Engine (JFreeReport)

Go to http://mondrian.pentaho.com/documentation/developers_guide.php for instructions on how to get the Mondrian code.

Getting the Source From Subversion

We use Subversion as our source code control system. If you are not familiar with Subversion, check out their web site for details about the system before you dive in here. If you are not familiar with Subversion, but have used CVS, you should have no problem with Subversion, as it is being built as a replacement to CVS, minus CVS's frustrations.

The following URLs are the locations for the various Pentaho projects available in the repository. Following the Subversion standard, each project contains three directories: branches, tags, and trunk.

Trunk - The latest code is in the trunk directory. This is usually the location you want use for development.

Branches - Previously released versions are in subdirectories under the branches directory. This is useful if you are debugging an older released version of the software.

Tags - Tagged versions of previous builds are located here. This is useful if you need the source code for a specific build including the nightly builds.

Note: All of the subversion projects are also available via HTTP. Simply replace svn:// with http:// and you can browse the source tree in your browser. You may also need to use the http protocol if your firewall blocks the svn protocol.

Projects

Platform Projects and Client Tools
svn://source.pentaho.org/svnroot
BI Server, Sample Data and Sample Solutions
svn://source.pentaho.org/svnroot/bi-platform-v2/
BI Server Plug-ins
svn://source.pentaho.org/svnroot/pentaho-solution-plugins/
Legacy (Pre 2.0) BI Server
svn://source.pentaho.org/svnroot/legacy/
Pentaho Open Admin Console
svn://source.pentaho.org/svnroot/pentaho-open-admin-console/
Design Studio
Core: svn://source.pentaho.org/svnroot/pentaho-designstudio-core/
Action Sequence Plugin: http://source.pentaho.org/svnroot/pentaho-actionsequence-plugin/
IDE Windows: svn://source.pentaho.org/svnroot/pentaho-designstudioIDE/
IDE Linux: svn://source.pentaho.org/svnroot/pentaho-designstudioIDE-linux/
IDE Mac: svn://source.pentaho.org/svnroot/pentaho-designstudioIDE-mac/
Report Designer
svn://source.pentaho.org/svnroot/pentaho-reportdesigner/
Pentaho Metadata
Editor: svn://source.pentaho.org/svnroot/pentaho-metadata-editor/
Metadata: svn://source.pentaho.org/svnroot/pentaho-metadata/
Aggregation Designer
svn://source.pentaho.org/svnroot/pentaho-aggdesigner/
Pentaho Data Integration (Kettle)
svn://source.pentaho.org/svnkettleroot/
Pentaho Report Engine (JFreeReport)
svn://source.pentaho.org/pentaho-reporting/

Developing in the Pentaho Projects

The Pentaho dev team uses Eclipse as their IDE, with the Subclipse plug-in for Eclipse to manage the projects out of the Subversion repository. 

To learn more about developing in these projects most effectively using Eclipse, go to http://wiki.pentaho.com/display/ServerDoc2x/Building+and+Debugging+Pentaho+with+Eclipse

We are always looking for ways to refine the development process and make it easier for our community to contribute. Please send suggestions, ideas, and solutions to any major annoyances to communityconnection@pentaho.com.


http://community.pentaho.com/getthecode/

内容概要:本文档围绕六自由度机械臂的ANN人工神经网络设计展开,涵盖正向与逆向运动学求解、正向动力学控制,并采用拉格朗日-欧拉法推导逆向动力学方程,所有内容均通过Matlab代码实现。同时结合RRT路径规划与B样条优化技术,提升机械臂运动轨迹的合理性与平滑性。文中还涉及多种先进算法与仿真技术的应用,如状态估计中的UKF、AUKF、EKF等滤波方法,以及PINN、INN、CNN-LSTM等神经网络模型在工程问题中的建模与求解,展示了Matlab在机器人控制、智能算法与系统仿真中的强大能力。; 适合人群:具备一定Ma六自由度机械臂ANN人工神经网络设计:正向逆向运动学求解、正向动力学控制、拉格朗日-欧拉法推导逆向动力学方程(Matlab代码实现)tlab编程基础,从事机器人控制、自动化、智能制造、人工智能等相关领域的科研人员及研究生;熟悉运动学、动力学建模或对神经网络在控制系统中应用感兴趣的工程技术人员。; 使用场景及目标:①实现六自由度机械臂的精确运动学与动力学建模;②利用人工神经网络解决传统解析方法难以处理的非线性控制问题;③结合路径规划与轨迹优化提升机械臂作业效率;④掌握基于Matlab的状态估计、数据融合与智能算法仿真方法; 阅读建议:建议结合提供的Matlab代码进行实践操作,重点理解运动学建模与神经网络控制的设计流程,关注算法实现细节与仿真结果分析,同时参考文中提及的多种优化与估计方法拓展研究思路。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值