POJ 2478 欧拉公式应用 筛选 素数

POJ 2478 - Farey Sequence

 
Farey Sequence
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 15789 Accepted: 6280

Description

The Farey Sequence Fn for any integer n with n >= 2 is the set of irreducible rational numbers a/b with 0 < a < b <= n and gcd(a,b) = 1 arranged in increasing order. The first few are 
F2 = {1/2} 
F3 = {1/3, 1/2, 2/3} 
F4 = {1/4, 1/3, 1/2, 2/3, 3/4} 
F5 = {1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5} 

You task is to calculate the number of terms in the Farey sequence Fn.

Input

There are several test cases. Each test case has only one line, which contains a positive integer n (2 <= n <= 106). There are no blank lines between cases. A line with a single 0 terminates the input.

Output

For each test case, you should output one line, which contains N(n) ---- the number of terms in the Farey sequence Fn. 

Sample Input

2
3
4
5
0

Sample Output

1
3
5
9

Source


#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
int phi[1000005];//设置phi[i]为小于i中与之互质(互素)的数的个数,然后根据欧拉公式算出。
void solve()
{
    memset(phi,0,sizeof(phi));
    for (int i=2;i<=1000000;i++)//筛选求phi
    {
        if (!phi[i])//当phi[i]未访问
        {
            for (int j=i;j<=1000000;j+=i)
            {
                if (phi[j]==0)//当phi[j]未访问
                phi[j]=j;
                    phi[j]=phi[j]-phi[j]/i;//算出phi[j]的个数(欧拉公式)。
            }
        }
    }
}
int main()
{
int n;
    solve();
    while (cin>>n)
    {
        if(n==0) break;
        long long sum = 0 ;
        for (int i=2;i<=n;i++)
            sum+=phi[i];
        cout<<sum<<endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值