LeetCode64 最小路径和

本文介绍了一种在矩阵中寻找从左上角到右下角的最小路径和的算法。该算法通过动态规划逐步更新每个位置的最小路径和,最终得到整个矩阵的最小路径和。举例说明了算法的应用过程。

Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.

Note: You can only move either down or right at any point in time.

Example:

Input:
[
[1,3,1],
[1,5,1],
[4,2,1]
]
Output: 7
Explanation: Because the path 1→3→1→1→1 minimizes the sum.

class Solution {
    public int minPathSum(int[][] grid) {
	int m = grid.length;// row
	int n = grid[0].length; // column
	for (int i = 0; i < m; i++) {
		for (int j = 0; j < n; j++) {
			if (i == 0 && j != 0) {
				grid[i][j] = grid[i][j] + grid[i][j - 1];
			} else if (i != 0 && j == 0) {
				grid[i][j] = grid[i][j] + grid[i - 1][j];
			} else if (i == 0 && j == 0) {
				grid[i][j] = grid[i][j];
			} else {
				grid[i][j] = Math.min(grid[i][j - 1], grid[i - 1][j])
						+ grid[i][j];
			}
		}
	}

	return grid[m - 1][n - 1];
}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值