A real end which is another new beginning

在2006年的夏天,结束了十二年的学习生涯,站在北京市第十三中学考点外,回顾过去并展望未来。

终结了十二年的记忆,明天又是一本崭新的人生历史之书地书写的开始,在这个阳光灿烂的日子里,匆匆忙忙地赶来为我的前十二年的历史之书作结语,曰:“2006年北京市高考北京第十三中学考点考试结束!(公元2006年6月8日 17:00:00 )”

本项目采用C++编程语言结合ROS框架构建了完整的双机械臂控制系统,实现了Gazebo仿真环境下的协同运动模拟,并完成了两台实体UR10工业机器人的联动控制。该毕业设计在答辩环节获得98分的优异成绩,所有程序代码均通过系统性调试验证,保证可直接部署运行。 系统架构包含三个核心模块:基于ROS通信架构的双臂协调控制器、Gazebo物理引擎下的动力学仿真环境、以及真实UR10机器人的硬件接口层。在仿真验证阶段,开发了双臂碰撞检测算法和轨迹规划模块,通过ROS控制包实现了末端执行器的同步轨迹跟踪。硬件集成方面,建立了基于TCP/IP协议的实时通信链路,解决了双机数据同步和运动指令分发等关键技术问题。 本资源适用于自动化、机械电子、人工智能等专业方向的课程实践,可作为高年级课程设计、毕业课题的重要参考案例。系统采用模块化设计理念,控制核心与硬件接口分离架构便于功能扩展,具备工程实践能力的学习者可在现有框架基础上进行二次开发,例如集成视觉感知模块或优化运动规划算法。 项目文档详细记录了环境配置流程、参数调试方法和实验验证数据,特别说明了双机协同作业时的时序同步解决方案。所有功能模块均提供完整的API接口说明,便于使用者快速理解系统架构并进行定制化修改。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
【微电网】【创新点】基于非支配排序的蜣螂优化算法NSDBO求解微电网多目标优化调度研究(Matlab代码实现)内容概要:本文围绕基于非支配排序的蜣螂优化算法(NSDBO)在微电网多目标优化调度中的应用展开研究,提出了一种改进的智能优化算法以解决微电网系统中经济性、环保性和能源效率等多重目标之间的权衡问题。通过引入非支配排序机制,NSDBO能够有效处理多目标优化中的帕累托前沿搜索,提升解的多样性和收敛性,并结合Matlab代码实现仿真验证,展示了该算法在微电网调度中的优越性能和实际可行性。研究涵盖了微电网典型结构建模、目标函数构建及约束条件处理,实现了对风、光、储能及传统机组的协同优化调度。; 适合人群:具备一定电力系统基础知识和Matlab编程能力的研究生、科研人员及从事微电网、智能优化算法应用的工程技术人员;熟悉优化算法与能源系统调度的高年级本科生亦可参考。; 使用场景及目标:①应用于微电网多目标优化调度问题的研究与仿真,如成本最小化、碳排放最低与供电可靠性最高之间的平衡;②为新型智能优化算法(如蜣螂优化算法及其改进版本)的设计与验证提供实践案例,推动其在能源系统中的推广应用;③服务于学术论文复现、课题研究或毕业设计中的算法对比与性能测试。; 阅读建议:建议读者结合文中提供的Matlab代码进行实践操作,重点关注NSDBO算法的核心实现步骤与微电网模型的构建逻辑,同时可对比其他多目标算法(如NSGA-II、MOPSO)以深入理解其优势与局限,进一步开展算法改进或应用场景拓展。
/* This file implements FGMRES (a Generalized Minimal Residual) method. Reference: Saad, 1993. Preconditioning: If the preconditioner is constant then this fgmres code is equivalent to RIGHT-PRECONDITIONED GMRES. FGMRES is a modification of gmres that allows the preconditioner to change at each iteration. Restarts: Restarts are basically solves with x0 not equal to zero. */ #include <../src/ksp/ksp/impls/gmres/fgmres/fgmresimpl.h> /*I "petscksp.h" I*/ #define FGMRES_DELTA_DIRECTIONS 10 #define FGMRES_DEFAULT_MAXK 30 static PetscErrorCode KSPFGMRESGetNewVectors(KSP, PetscInt); static PetscErrorCode KSPFGMRESUpdateHessenberg(KSP, PetscInt, PetscBool, PetscReal *); static PetscErrorCode KSPFGMRESBuildSoln(PetscScalar *, Vec, Vec, KSP, PetscInt); static PetscErrorCode KSPSetUp_FGMRES(KSP ksp) { PetscInt max_k, k; KSP_FGMRES *fgmres = (KSP_FGMRES *)ksp->data; PetscFunctionBegin; max_k = fgmres->max_k; PetscCall(KSPSetUp_GMRES(ksp)); PetscCall(PetscMalloc1(max_k + 2, &fgmres->prevecs)); PetscCall(PetscMalloc1(max_k + 2, &fgmres->prevecs_user_work)); /* fgmres->vv_allocated includes extra work vectors, which are not used in the additional block of vectors used to store the preconditioned directions, hence the -VEC_OFFSET term for this first allocation of vectors holding preconditioned directions */ PetscCall(KSPCreateVecs(ksp, fgmres->vv_allocated - VEC_OFFSET, &fgmres->prevecs_user_work[0], 0, NULL)); for (k = 0; k < fgmres->vv_allocated - VEC_OFFSET; k++) fgmres->prevecs[k] = fgmres->prevecs_user_work[0][k]; PetscFunctionReturn(PETSC_SUCCESS); } static PetscErrorCode KSPFGMRESResidual(KSP ksp) { KSP_FGMRES *fgmres = (KSP_FGMRES *)ksp->data; Mat Amat, Pmat; PetscFunctionBegin; PetscCall(PCGetOperators(ksp->pc, &Amat, &Pmat)); /* put A*x into VEC_TEMP */ PetscCall(KSP_MatMult(ksp, Amat, ksp->vec_sol, VEC_TEMP)); /* now put residual (-A*x + f) into vec_vv(0) */ PetscCall(VecWAXPY(VEC_VV(0), -1.0, VEC_TEMP, ksp->vec_rhs)); PetscFunctionReturn(PETSC_SUCCESS); } static PetscErrorCode KSPFGMRESCycle(PetscInt *itcount, KSP ksp) { KSP_FGMRES *fgmres = (KSP_FGMRES *)ksp->data; PetscReal res_norm; PetscReal hapbnd, tt; PetscBool hapend = PETSC_FALSE; /* indicates happy breakdown ending */ PetscInt loc_it; /* local count of # of dir. in Krylov space */ PetscInt max_k = fgmres->max_k; /* max # of directions Krylov space */ Mat Amat, Pmat; PetscFunctionBegin; /* Number of pseudo iterations since last restart is the number of prestart directions */ loc_it = 0; /* note: (fgmres->it) is always set one less than (loc_it) It is used in KSPBUILDSolution_FGMRES, where it is passed to KSPFGMRESBuildSoln. Note that when KSPFGMRESBuildSoln is called from this function, (loc_it -1) is passed, so the two are equivalent */ fgmres->it = (loc_it - 1); /* initial residual is in VEC_VV(0) - compute its norm*/ PetscCall(VecNorm(VEC_VV(0), NORM_2, &res_norm)); KSPCheckNorm(ksp, res_norm); /* The first entry in the right-hand side of the Hessenberg system is just the initial residual norm */ *RS(0) = res_norm; ksp->rnorm = res_norm; PetscCall(KSPLogResidualHistory(ksp, res_norm)); PetscCall(KSPMonitor(ksp, ksp->its, res_norm)); /* check for the convergence - maybe the current guess is good enough */ PetscCall((*ksp->converged)(ksp, ksp->its, res_norm, &ksp->reason, ksp->cnvP)); if (ksp->reason) { if (itcount) *itcount = 0; PetscFunctionReturn(PETSC_SUCCESS); } /* scale VEC_VV (the initial residual) */ PetscCall(VecScale(VEC_VV(0), 1.0 / res_norm)); /* MAIN ITERATION LOOP BEGINNING*/ /* keep iterating until we have converged OR generated the max number of directions OR reached the max number of iterations for the method */ while (!ksp->reason && loc_it < max_k && ksp->its < ksp->max_it) { if (loc_it) { PetscCall(KSPLogResidualHistory(ksp, res_norm)); PetscCall(KSPMonitor(ksp, ksp->its, res_norm)); } fgmres->it = (loc_it - 1); /* see if more space is needed for work vectors */ if (fgmres->vv_allocated <= loc_it + VEC_OFFSET + 1) { PetscCall(KSPFGMRESGetNewVectors(ksp, loc_it + 1)); /* (loc_it+1) is passed in as number of the first vector that should be allocated */ } /* CHANGE THE PRECONDITIONER? */ /* ModifyPC is the callback function that can be used to change the PC or its attributes before its applied */ PetscCall((*fgmres->modifypc)(ksp, ksp->its, loc_it, res_norm, fgmres->modifyctx)); /* apply PRECONDITIONER to direction vector and store with preconditioned vectors in prevec */ PetscCall(KSP_PCApply(ksp, VEC_VV(loc_it), PREVEC(loc_it))); PetscCall(PCGetOperators(ksp->pc, &Amat, &Pmat)); /* Multiply preconditioned vector by operator - put in VEC_VV(loc_it+1) */ PetscCall(KSP_MatMult(ksp, Amat, PREVEC(loc_it), VEC_VV(1 + loc_it))); /* update Hessenberg matrix and do Gram-Schmidt - new direction is in VEC_VV(1+loc_it)*/ PetscCall((*fgmres->orthog)(ksp, loc_it)); /* new entry in hessenburg is the 2-norm of our new direction */ PetscCall(VecNorm(VEC_VV(loc_it + 1), NORM_2, &tt)); KSPCheckNorm(ksp, tt); *HH(loc_it + 1, loc_it) = tt; *HES(loc_it + 1, loc_it) = tt; /* Happy Breakdown Check */ hapbnd = PetscAbsScalar((tt) / *RS(loc_it)); /* RS(loc_it) contains the res_norm from the last iteration */ hapbnd = PetscMin(fgmres->haptol, hapbnd); if (tt > hapbnd) { /* scale new direction by its norm */ PetscCall(VecScale(VEC_VV(loc_it + 1), 1.0 / tt)); } else { /* This happens when the solution is exactly reached. */ /* So there is no new direction... */ PetscCall(VecSet(VEC_TEMP, 0.0)); /* set VEC_TEMP to 0 */ hapend = PETSC_TRUE; } /* note that for FGMRES we could get HES(loc_it+1, loc_it) = 0 and the current solution would not be exact if HES was singular. Note that HH non-singular implies that HES is no singular, and HES is guaranteed to be nonsingular when PREVECS are linearly independent and A is nonsingular (in GMRES, the nonsingularity of A implies the nonsingularity of HES). So we should really add a check to verify that HES is nonsingular.*/ /* Now apply rotations to the new column of Hessenberg (and the right-hand side of the system), calculate new rotation, and get new residual norm at the same time*/ PetscCall(KSPFGMRESUpdateHessenberg(ksp, loc_it, hapend, &res_norm)); if (ksp->reason) break; loc_it++; fgmres->it = (loc_it - 1); /* Add this here in case it has converged */ PetscCall(PetscObjectSAWsTakeAccess((PetscObject)ksp)); ksp->its++; ksp->rnorm = res_norm; PetscCall(PetscObjectSAWsGrantAccess((PetscObject)ksp)); PetscCall((*ksp->converged)(ksp, ksp->its, res_norm, &ksp->reason, ksp->cnvP)); /* Catch error in happy breakdown and signal convergence and break from loop */ if (hapend) { if (!ksp->reason) { PetscCheck(!ksp->errorifnotconverged, PetscObjectComm((PetscObject)ksp), PETSC_ERR_NOT_CONVERGED, "Reached happy break down, but convergence was not indicated. Residual norm = %g", (double)res_norm); ksp->reason = KSP_DIVERGED_BREAKDOWN; break; } } } /* END OF ITERATION LOOP */ if (itcount) *itcount = loc_it; /* Down here we have to solve for the "best" coefficients of the Krylov columns, add the solution values together, and possibly unwind the preconditioning from the solution */ /* Form the solution (or the solution so far) */ /* Note: must pass in (loc_it-1) for iteration count so that KSPFGMRESBuildSoln properly navigates */ PetscCall(KSPFGMRESBuildSoln(RS(0), ksp->vec_sol, ksp->vec_sol, ksp, loc_it - 1)); /* Monitor if we know that we will not return for a restart */ if (ksp->reason == KSP_CONVERGED_ITERATING && ksp->its >= ksp->max_it) ksp->reason = KSP_DIVERGED_ITS; if (loc_it && ksp->reason) { PetscCall(KSPMonitor(ksp, ksp->its, res_norm)); PetscCall(KSPLogResidualHistory(ksp, res_norm)); } PetscFunctionReturn(PETSC_SUCCESS); } static PetscErrorCode KSPSolve_FGMRES(KSP ksp) { PetscInt cycle_its = 0; /* iterations done in a call to KSPFGMRESCycle */ KSP_FGMRES *fgmres = (KSP_FGMRES *)ksp->data; PetscBool diagonalscale; PetscFunctionBegin; PetscCall(PCGetDiagonalScale(ksp->pc, &diagonalscale)); PetscCheck(!diagonalscale, PetscObjectComm((PetscObject)ksp), PETSC_ERR_SUP, "Krylov method %s does not support diagonal scaling", ((PetscObject)ksp)->type_name); PetscCall(PetscObjectSAWsTakeAccess((PetscObject)ksp)); ksp->its = 0; PetscCall(PetscObjectSAWsGrantAccess((PetscObject)ksp)); /* Compute the initial (NOT preconditioned) residual */ if (!ksp->guess_zero) { PetscCall(KSPFGMRESResidual(ksp)); } else { /* guess is 0 so residual is F (which is in ksp->vec_rhs) */ PetscCall(VecCopy(ksp->vec_rhs, VEC_VV(0))); } /* This may be true only on a subset of MPI ranks; setting it here so it will be detected by the first norm computation in the Krylov method */ PetscCall(VecFlag(VEC_VV(0), ksp->reason == KSP_DIVERGED_PC_FAILED)); /* now the residual is in VEC_VV(0) - which is what KSPFGMRESCycle expects... */ PetscCall(KSPFGMRESCycle(&cycle_its, ksp)); while (!ksp->reason) { PetscCall(KSPFGMRESResidual(ksp)); if (ksp->its >= ksp->max_it) break; PetscCall(KSPFGMRESCycle(&cycle_its, ksp)); } /* mark lack of convergence */ if (ksp->its >= ksp->max_it && !ksp->reason) ksp->reason = KSP_DIVERGED_ITS; PetscFunctionReturn(PETSC_SUCCESS); } extern PetscErrorCode KSPReset_FGMRES(KSP); static PetscErrorCode KSPDestroy_FGMRES(KSP ksp) { PetscFunctionBegin; PetscCall(KSPReset_FGMRES(ksp)); PetscCall(PetscObjectComposeFunction((PetscObject)ksp, "KSPFGMRESSetModifyPC_C", NULL)); PetscCall(PetscObjectComposeFunction((PetscObject)ksp, "KSPFlexibleSetModifyPC_C", NULL)); PetscCall(KSPDestroy_GMRES(ksp)); PetscFunctionReturn(PETSC_SUCCESS); } static PetscErrorCode KSPFGMRESBuildSoln(PetscScalar *nrs, Vec vguess, Vec vdest, KSP ksp, PetscInt it) { PetscScalar tt; PetscInt ii, k, j; KSP_FGMRES *fgmres = (KSP_FGMRES *)ksp->data; PetscFunctionBegin; /* Solve for solution vector that minimizes the residual */ /* If it is < 0, no fgmres steps have been performed */ if (it < 0) { PetscCall(VecCopy(vguess, vdest)); /* VecCopy() is smart, exists immediately if vguess == vdest */ PetscFunctionReturn(PETSC_SUCCESS); } /* so fgmres steps HAVE been performed */ /* solve the upper triangular system - RS is the right side and HH is the upper triangular matrix - put soln in nrs */ if (*HH(it, it) != 0.0) { nrs[it] = *RS(it) / *HH(it, it); } else { nrs[it] = 0.0; } for (ii = 1; ii <= it; ii++) { k = it - ii; tt = *RS(k); for (j = k + 1; j <= it; j++) tt = tt - *HH(k, j) * nrs[j]; nrs[k] = tt / *HH(k, k); } /* Accumulate the correction to the soln of the preconditioned prob. in VEC_TEMP - note that we use the preconditioned vectors */ PetscCall(VecMAXPBY(VEC_TEMP, it + 1, nrs, 0, &PREVEC(0))); /* put updated solution into vdest.*/ if (vdest != vguess) { PetscCall(VecCopy(VEC_TEMP, vdest)); PetscCall(VecAXPY(vdest, 1.0, vguess)); } else { /* replace guess with solution */ PetscCall(VecAXPY(vdest, 1.0, VEC_TEMP)); } PetscFunctionReturn(PETSC_SUCCESS); } static PetscErrorCode KSPFGMRESUpdateHessenberg(KSP ksp, PetscInt it, PetscBool hapend, PetscReal *res) { PetscScalar *hh, *cc, *ss, tt; PetscInt j; KSP_FGMRES *fgmres = (KSP_FGMRES *)ksp->data; PetscFunctionBegin; hh = HH(0, it); /* pointer to beginning of column to update - so incrementing hh "steps down" the (it+1)th col of HH*/ cc = CC(0); /* beginning of cosine rotations */ ss = SS(0); /* beginning of sine rotations */ /* Apply all the previously computed plane rotations to the new column of the Hessenberg matrix */ /* Note: this uses the rotation [conj(c) s ; -s c], c= cos(theta), s= sin(theta), and some refs have [c s ; -conj(s) c] (don't be confused!) */ for (j = 1; j <= it; j++) { tt = *hh; *hh = PetscConj(*cc) * tt + *ss * *(hh + 1); hh++; *hh = *cc++ * *hh - (*ss++ * tt); /* hh, cc, and ss have all been incremented one by end of loop */ } /* compute the new plane rotation, and apply it to: 1) the right-hand side of the Hessenberg system (RS) note: it affects RS(it) and RS(it+1) 2) the new column of the Hessenberg matrix note: it affects HH(it,it) which is currently pointed to by hh and HH(it+1, it) (*(hh+1)) thus obtaining the updated value of the residual... */ /* compute new plane rotation */ if (!hapend) { tt = PetscSqrtScalar(PetscConj(*hh) * *hh + PetscConj(*(hh + 1)) * *(hh + 1)); if (tt == 0.0) { ksp->reason = KSP_DIVERGED_NULL; PetscFunctionReturn(PETSC_SUCCESS); } *cc = *hh / tt; /* new cosine value */ *ss = *(hh + 1) / tt; /* new sine value */ /* apply to 1) and 2) */ *RS(it + 1) = -(*ss * *RS(it)); *RS(it) = PetscConj(*cc) * *RS(it); *hh = PetscConj(*cc) * *hh + *ss * *(hh + 1); /* residual is the last element (it+1) of right-hand side! */ *res = PetscAbsScalar(*RS(it + 1)); } else { /* happy breakdown: HH(it+1, it) = 0, therefore we don't need to apply another rotation matrix (so RH doesn't change). The new residual is always the new sine term times the residual from last time (RS(it)), but now the new sine rotation would be zero...so the residual should be zero...so we will multiply "zero" by the last residual. This might not be exactly what we want to do here -could just return "zero". */ *res = 0.0; } PetscFunctionReturn(PETSC_SUCCESS); } static PetscErrorCode KSPFGMRESGetNewVectors(KSP ksp, PetscInt it) { KSP_FGMRES *fgmres = (KSP_FGMRES *)ksp->data; PetscInt nwork = fgmres->nwork_alloc; /* number of work vector chunks allocated */ PetscInt nalloc; /* number to allocate */ PetscInt k; PetscFunctionBegin; nalloc = fgmres->delta_allocate; /* number of vectors to allocate in a single chunk */ /* Adjust the number to allocate to make sure that we don't exceed the number of available slots (fgmres->vecs_allocated)*/ if (it + VEC_OFFSET + nalloc >= fgmres->vecs_allocated) nalloc = fgmres->vecs_allocated - it - VEC_OFFSET; if (!nalloc) PetscFunctionReturn(PETSC_SUCCESS); fgmres->vv_allocated += nalloc; /* vv_allocated is the number of vectors allocated */ /* work vectors */ PetscCall(KSPCreateVecs(ksp, nalloc, &fgmres->user_work[nwork], 0, NULL)); for (k = 0; k < nalloc; k++) fgmres->vecs[it + VEC_OFFSET + k] = fgmres->user_work[nwork][k]; /* specify size of chunk allocated */ fgmres->mwork_alloc[nwork] = nalloc; /* preconditioned vectors */ PetscCall(KSPCreateVecs(ksp, nalloc, &fgmres->prevecs_user_work[nwork], 0, NULL)); for (k = 0; k < nalloc; k++) fgmres->prevecs[it + k] = fgmres->prevecs_user_work[nwork][k]; /* increment the number of work vector chunks */ fgmres->nwork_alloc++; PetscFunctionReturn(PETSC_SUCCESS); } static PetscErrorCode KSPBuildSolution_FGMRES(KSP ksp, Vec ptr, Vec *result) { KSP_FGMRES *fgmres = (KSP_FGMRES *)ksp->data; PetscFunctionBegin; if (!ptr) { if (!fgmres->sol_temp) PetscCall(VecDuplicate(ksp->vec_sol, &fgmres->sol_temp)); ptr = fgmres->sol_temp; } if (!fgmres->nrs) { /* allocate the work area */ PetscCall(PetscMalloc1(fgmres->max_k, &fgmres->nrs)); } PetscCall(KSPFGMRESBuildSoln(fgmres->nrs, ksp->vec_sol, ptr, ksp, fgmres->it)); if (result) *result = ptr; PetscFunctionReturn(PETSC_SUCCESS); } static PetscErrorCode KSPSetFromOptions_FGMRES(KSP ksp, PetscOptionItems PetscOptionsObject) { PetscBool flg; PetscFunctionBegin; PetscCall(KSPSetFromOptions_GMRES(ksp, PetscOptionsObject)); PetscOptionsHeadBegin(PetscOptionsObject, "KSP flexible GMRES Options"); PetscCall(PetscOptionsBoolGroupBegin("-ksp_fgmres_modifypcnochange", "do not vary the preconditioner", "KSPFGMRESSetModifyPC", &flg)); if (flg) PetscCall(KSPFGMRESSetModifyPC(ksp, KSPFGMRESModifyPCNoChange, NULL, NULL)); PetscCall(PetscOptionsBoolGroupEnd("-ksp_fgmres_modifypcksp", "vary the KSP based preconditioner", "KSPFGMRESSetModifyPC", &flg)); if (flg) PetscCall(KSPFGMRESSetModifyPC(ksp, KSPFGMRESModifyPCKSP, NULL, NULL)); PetscOptionsHeadEnd(); PetscFunctionReturn(PETSC_SUCCESS); } static PetscErrorCode KSPFGMRESSetModifyPC_FGMRES(KSP ksp, KSPFlexibleModifyPCFn *fcn, void *ctx, PetscCtxDestroyFn *d) { PetscFunctionBegin; PetscValidHeaderSpecific(ksp, KSP_CLASSID, 1); ((KSP_FGMRES *)ksp->data)->modifypc = fcn; ((KSP_FGMRES *)ksp->data)->modifydestroy = d; ((KSP_FGMRES *)ksp->data)->modifyctx = ctx; PetscFunctionReturn(PETSC_SUCCESS); } PetscErrorCode KSPReset_FGMRES(KSP ksp) { KSP_FGMRES *fgmres = (KSP_FGMRES *)ksp->data; PetscInt i; PetscFunctionBegin; PetscCall(PetscFree(fgmres->prevecs)); if (fgmres->nwork_alloc > 0) { i = 0; /* In the first allocation we allocated VEC_OFFSET fewer vectors in prevecs */ PetscCall(VecDestroyVecs(fgmres->mwork_alloc[i] - VEC_OFFSET, &fgmres->prevecs_user_work[i])); for (i = 1; i < fgmres->nwork_alloc; i++) PetscCall(VecDestroyVecs(fgmres->mwork_alloc[i], &fgmres->prevecs_user_work[i])); } PetscCall(PetscFree(fgmres->prevecs_user_work)); if (fgmres->modifydestroy) PetscCall((*fgmres->modifydestroy)(&fgmres->modifyctx)); PetscCall(KSPReset_GMRES(ksp)); PetscFunctionReturn(PETSC_SUCCESS); } static PetscErrorCode KSPGMRESSetRestart_FGMRES(KSP ksp, PetscInt max_k) { KSP_FGMRES *gmres = (KSP_FGMRES *)ksp->data; PetscFunctionBegin; PetscCheck(max_k >= 1, PetscObjectComm((PetscObject)ksp), PETSC_ERR_ARG_OUTOFRANGE, "Restart must be positive"); if (!ksp->setupstage) { gmres->max_k = max_k; } else if (gmres->max_k != max_k) { gmres->max_k = max_k; ksp->setupstage = KSP_SETUP_NEW; /* free the data structures, then create them again */ PetscCall(KSPReset_FGMRES(ksp)); } PetscFunctionReturn(PETSC_SUCCESS); } static PetscErrorCode KSPGMRESGetRestart_FGMRES(KSP ksp, PetscInt *max_k) { KSP_FGMRES *gmres = (KSP_FGMRES *)ksp->data; PetscFunctionBegin; *max_k = gmres->max_k; PetscFunctionReturn(PETSC_SUCCESS); } /*MC KSPFGMRES - Implements the Flexible Generalized Minimal Residual method, flexible GMRES. [](sec_flexibleksp) Options Database Keys: + -ksp_gmres_restart <restart> - the number of Krylov directions to orthogonalize against . -ksp_gmres_haptol <tol> - sets the tolerance for "happy ending" (exact convergence) . -ksp_gmres_preallocate - preallocate all the Krylov search directions initially (otherwise groups of vectors are allocated as needed) . -ksp_gmres_classicalgramschmidt - use classical (unmodified) Gram-Schmidt to orthogonalize against the Krylov space (fast) (the default) . -ksp_gmres_modifiedgramschmidt - use modified Gram-Schmidt in the orthogonalization (more stable, but slower) . -ksp_gmres_cgs_refinement_type <refine_never,refine_ifneeded,refine_always> - determine if iterative refinement is used to increase the stability of the classical Gram-Schmidt orthogonalization. . -ksp_gmres_krylov_monitor - plot the Krylov space generated . -ksp_fgmres_modifypcnochange - do not change the preconditioner between iterations - -ksp_fgmres_modifypcksp - modify the preconditioner using `KSPFGMRESModifyPCKSP()` Level: beginner Notes: See `KSPFlexibleSetModifyPC()` or `KSPFGMRESSetModifyPC()` for how to vary the preconditioner between iterations GMRES requires that the preconditioner used is a linear operator. Flexible GMRES allows the preconditioner to be a nonlinear operator. This allows, for example, Flexible GMRES to use GMRES solvers or other Krylov solvers (which are nonlinear operators in general) inside the preconditioner used by `KSPFGMRES`. For example, the options `-ksp_type fgmres -pc_type ksp -ksp_ksp_type bcgs -ksp_view -ksp_pc_type jacobi` make the preconditioner (or inner solver) be bi-CG-stab with a preconditioner of `PCJACOBI`. `KSPFCG` provides a flexible version of the preconditioned conjugate gradient method. Only right preconditioning is supported. The following options `-ksp_type fgmres -pc_type ksp -ksp_ksp_type bcgs -ksp_view -ksp_pc_type jacobi` make the preconditioner (or inner solver) be bi-CG-stab with a preconditioner of `PCJACOBI` Developer Note: This object is subclassed off of `KSPGMRES`, see the source code in src/ksp/ksp/impls/gmres for comments on the structure of the code Contributed by: Allison Baker .seealso: [](ch_ksp), [](sec_flexibleksp), `KSPCreate()`, `KSPSetType()`, `KSPType`, `KSP`, `KSPGMRES`, `KSPLGMRES`, `KSPFCG`, `KSPGMRESSetRestart()`, `KSPGMRESSetHapTol()`, `KSPGMRESSetPreAllocateVectors()`, `KSPGMRESSetOrthogonalization()`, `KSPGMRESGetOrthogonalization()`, `KSPGMRESClassicalGramSchmidtOrthogonalization()`, `KSPGMRESModifiedGramSchmidtOrthogonalization()`, `KSPGMRESCGSRefinementType`, `KSPGMRESSetCGSRefinementType()`, `KSPGMRESGetCGSRefinementType()`, `KSPGMRESMonitorKrylov()`, `KSPFGMRESSetModifyPC()`, `KSPFGMRESModifyPCKSP()` M*/ PETSC_EXTERN PetscErrorCode KSPCreate_FGMRES(KSP ksp) { KSP_FGMRES *fgmres; PetscFunctionBegin; PetscCall(PetscNew(&fgmres)); ksp->data = (void *)fgmres; ksp->ops->buildsolution = KSPBuildSolution_FGMRES; ksp->ops->setup = KSPSetUp_FGMRES; ksp->ops->solve = KSPSolve_FGMRES; ksp->ops->reset = KSPReset_FGMRES; ksp->ops->destroy = KSPDestroy_FGMRES; ksp->ops->view = KSPView_GMRES; ksp->ops->setfromoptions = KSPSetFromOptions_FGMRES; ksp->ops->computeextremesingularvalues = KSPComputeExtremeSingularValues_GMRES; ksp->ops->computeeigenvalues = KSPComputeEigenvalues_GMRES; PetscCall(KSPSetSupportedNorm(ksp, KSP_NORM_UNPRECONDITIONED, PC_RIGHT, 3)); PetscCall(KSPSetSupportedNorm(ksp, KSP_NORM_NONE, PC_RIGHT, 1)); PetscCall(PetscObjectComposeFunction((PetscObject)ksp, "KSPGMRESSetPreAllocateVectors_C", KSPGMRESSetPreAllocateVectors_GMRES)); PetscCall(PetscObjectComposeFunction((PetscObject)ksp, "KSPGMRESSetOrthogonalization_C", KSPGMRESSetOrthogonalization_GMRES)); PetscCall(PetscObjectComposeFunction((PetscObject)ksp, "KSPGMRESGetOrthogonalization_C", KSPGMRESGetOrthogonalization_GMRES)); PetscCall(PetscObjectComposeFunction((PetscObject)ksp, "KSPGMRESSetRestart_C", KSPGMRESSetRestart_FGMRES)); PetscCall(PetscObjectComposeFunction((PetscObject)ksp, "KSPGMRESGetRestart_C", KSPGMRESGetRestart_FGMRES)); PetscCall(PetscObjectComposeFunction((PetscObject)ksp, "KSPFGMRESSetModifyPC_C", KSPFGMRESSetModifyPC_FGMRES)); PetscCall(PetscObjectComposeFunction((PetscObject)ksp, "KSPFlexibleSetModifyPC_C", KSPFGMRESSetModifyPC_FGMRES)); PetscCall(PetscObjectComposeFunction((PetscObject)ksp, "KSPGMRESSetCGSRefinementType_C", KSPGMRESSetCGSRefinementType_GMRES)); PetscCall(PetscObjectComposeFunction((PetscObject)ksp, "KSPGMRESGetCGSRefinementType_C", KSPGMRESGetCGSRefinementType_GMRES)); fgmres->haptol = 1.0e-30; fgmres->q_preallocate = 0; fgmres->delta_allocate = FGMRES_DELTA_DIRECTIONS; fgmres->orthog = KSPGMRESClassicalGramSchmidtOrthogonalization; fgmres->nrs = NULL; fgmres->sol_temp = NULL; fgmres->max_k = FGMRES_DEFAULT_MAXK; fgmres->Rsvd = NULL; fgmres->orthogwork = NULL; fgmres->modifypc = KSPFGMRESModifyPCNoChange; fgmres->modifyctx = NULL; fgmres->modifydestroy = NULL; fgmres->cgstype = KSP_GMRES_CGS_REFINE_NEVER; PetscFunctionReturn(PETSC_SUCCESS); }中文注释,转成Fortran
07-02
<think>我们有一个C语言文件,它实现了FGMRES(灵活广义最小残差法)。现在需要将其转换为Fortran,并添加中文注释。由于Fortran和C在语法和结构上有很大差异,我们需要重新组织代码。同时,由于Fortran没有指针和动态内存管理(至少不是直接相同的方式),我们将使用Fortran的模块和派生类型来模拟C中的结构。此外,Fortran中需要显式管理内存(使用allocate和deallocate)。注意:这个转换是一个复杂的任务,因为原始代码是PETSc的一部分,使用了PETSc的特定数据结构和函数。我们不可能完全转换所有PETSc函数,但我们将尝试转换FGMRES算法的核心部分,并添加中文注释。我们将创建一个Fortran模块,其中包含FGMRES所需的变量和子例程。由于PETSc的Fortran接口存在,我们假设已经有一些接口。由于代码很长,我们将重点放在主要循环和关键步骤上,并尽量保持结构相似。步骤:1.定义一个模块,包含FGMRES所需的参数和派生类型。2.转换主要的函数:KSPSolve_FGMRES, KSPFGMRESCycle,KSPFGMRESUpdateHessenberg,KSPFGMRESBuildSoln等。3.注意:Fortran中数组索引从1开始,而C从0开始,需要调整。4.由于PETSc的Fortran接口通常使用大写函数名(如KSPSetUp,VecCopy等),我们将假设这些函数有Fortran绑定。由于整个代码转换非常庞大,我们将只转换关键部分,并尽可能用伪代码和注释说明。注意:以下代码是一个简化版本,仅用于展示算法结构,不能直接编译运行。实际使用时需要完整的PETScFortran接口支持。我们首先定义一些常量,然后定义FGMRES相关的类型和子例程。</think>以下是对提供的 C 代码进行中文注释并转换为 Fortran 的版本。由于 PETSc 框架主要使用 C/C++,完整转换到 Fortran 需要重写整个 PETSc 接口,因此这里展示核心算法结构的 Fortran 实现思路,并保留详细注释: ```fortran module fgmres_module use petscksp implicit none ! 定义 FGMRES 参数 integer, parameter :: FGMRES_DELTA_DIRECTIONS = 10 integer, parameter :: FGMRES_DEFAULT_MAXK = 30 real(8), parameter :: PETSC_SMALL = 1.0d-30 ! FGMRES 数据结构 type :: KSP_FGMRES integer :: max_k ! 最大 Krylov 空间维度 integer :: vv_allocated ! 已分配的向量数 real(8) :: haptol ! 快乐分解容差 type(tVec), allocatable :: prevecs(:) ! 预处理后的向量 ! 其他必要变量... end type KSP_FGMRES contains ! 核心 FGMRES 求解例程 subroutine KSPSolve_FGMRES(ksp, fgmres) type(tKSP) :: ksp type(KSP_FGMRES) :: fgmres integer :: cycle_its, ierr logical :: diagonalscale ! 检查对角缩放支持 call PCGetDiagonalScale(ksp%pc, diagonalscale, ierr) if (diagonalscale) then print *, "错误: FGMRES 不支持对角缩放" return endif ksp%its = 0 ! 初始化迭代计数 ! 计算初始残差 if (.not. ksp%guess_zero) then call KSPFGMRESResidual(ksp, fgmres) else call VecCopy(ksp%vec_rhs, fgmres%vv(1)) ! VEC_VV(0) endif ! 主求解循环 call KSPFGMRESCycle(ksp, fgmres, cycle_its) do while (ksp%reason == KSP_CONVERGED_ITERATING .and. ksp%its < ksp%max_it) call KSPFGMRESResidual(ksp, fgmres) call KSPFGMRESCycle(ksp, fgmres, cycle_its) end do ! 处理未收敛情况 if (ksp%its >= ksp%max_it .and. ksp%reason == KSP_CONVERGED_ITERATING) then ksp%reason = KSP_DIVERGED_ITS endif end subroutine KSPSolve_FGMRES ! FGMRES 单次循环 subroutine KSPFGMRESCycle(ksp, fgmres, itcount) type(tKSP) :: ksp type(KSP_FGMRES) :: fgmres integer, intent(out) :: itcount real(8) :: res_norm, hapbnd, tt logical :: hapend integer :: loc_it, max_k, ierr type(tMat) :: Amat, Pmat loc_it = 0 max_k = fgmres%max_k hapend = .false. ! 计算初始残差范数 call VecNorm(fgmres%vv(1), NORM_2, res_norm, ierr) fgmres%rs(1) = res_norm ! RS(0) ksp%rnorm = res_norm ! 检查收敛 call KSPConverged(ksp, ksp%its, res_norm, ksp%reason, ksp%cnvP, ierr) if (ksp%reason /= KSP_CONVERGED_ITERATING) then itcount = 0 return endif ! 缩放初始残差 call VecScale(fgmres%vv(1), 1.0d0 / res_norm, ierr) ! 主迭代循环 do while (ksp%reason == KSP_CONVERGED_ITERATING .and. & loc_it < max_k .and. ksp%its < ksp%max_it) ! 检查向量空间是否足够 if (fgmres%vv_allocated < loc_it + 3) then ! VEC_OFFSET=2 call KSPFGMRESGetNewVectors(ksp, fgmres, loc_it + 1) endif ! 应用预处理 (核心变化点) call KSP_PCApply(ksp, fgmres%vv(loc_it+1), fgmres%prevecs(loc_it+1)) ! 矩阵向量乘积: A*prevec call PCGetOperators(ksp%pc, Amat, Pmat, ierr) call KSP_MatMult(ksp, Amat, fgmres%prevecs(loc_it+1), fgmres%vv(loc_it+2)) ! 正交化过程 call fgmres_orthog(ksp, fgmres, loc_it) ! 计算新方向范数 call VecNorm(fgmres%vv(loc_it+2), NORM_2, tt, ierr) fgmres%hh(loc_it+1, loc_it+1) = tt ! HH(loc_it+1, loc_it) fgmres%hes(loc_it+1, loc_it+1) = tt ! HES(loc_it+1, loc_it) ! 快乐分解检查 hapbnd = min(fgmres%haptol, abs(tt / fgmres%rs(loc_it+1))) if (tt > hapbnd) then call VecScale(fgmres%vv(loc_it+2), 1.0d0 / tt, ierr) else call VecSet(fgmres%temp, 0.0d0, ierr) hapend = .true. endif ! 更新Hessenberg矩阵 call KSPFGMRESUpdateHessenberg(ksp, fgmres, loc_it, hapend, res_norm) if (ksp%reason /= KSP_CONVERGED_ITERATING) exit loc_it = loc_it + 1 ksp%its = ksp%its + 1 ksp%rnorm = res_norm ! 收敛检查 call KSPConverged(ksp, ksp%its, res_norm, ksp%reason, ksp%cnvP, ierr) end do itcount = loc_it ! 构建最终解 call KSPFGMRESBuildSoln(fgmres%rs, ksp%vec_sol, ksp%vec_sol, ksp, fgmres, loc_it-1) end subroutine KSPFGMRESCycle ! 更新 Hessenberg 矩阵的子程序 subroutine KSPFGMRESUpdateHessenberg(ksp, fgmres, it, hapend, res) type(tKSP) :: ksp type(KSP_FGMRES) :: fgmres integer, intent(in) :: it logical, intent(in) :: hapend real(8), intent(out) :: res real(8) :: hh(it+1), cc(it), ss(it), tt integer :: j ! 应用旋转矩阵 do j = 1, it tt = fgmres%hh(j, it+1) fgmres%hh(j, it+1) = conjg(cc(j)) * tt + ss(j) * fgmres%hh(j+1, it+1) fgmres%hh(j+1, it+1) = cc(j) * fgmres%hh(j+1, it+1) - ss(j) * tt end do if (.not. hapend) then ! 计算新旋转矩阵 tt = sqrt(abs(fgmres%hh(it+1, it+1))**2 + abs(fgmres%hh(it+2, it+1))**2) cc(it+1) = fgmres%hh(it+1, it+1) / tt ss(it+1) = fgmres%hh(it+2, it+1) / tt ! 应用旋转 fgmres%rs(it+2) = -ss(it+1) * fgmres%rs(it+1) fgmres%rs(it+1) = conjg(cc(it+1)) * fgmres%rs(it+1) fgmres%hh(it+1, it+1) = conjg(cc(it+1)) * fgmres%hh(it+1, it+1) + ss(it+1) * fgmres%hh(it+2, it+1) res = abs(fgmres%rs(it+2)) else res = 0.0d0 endif end subroutine KSPFGMRESUpdateHessenberg ! 构建解向量 subroutine KSPFGMRESBuildSoln(nrs, vguess, vdest, ksp, fgmres, it) real(8) :: nrs(:) type(tVec) :: vguess, vdest type(tKSP) :: ksp type(KSP_FGMRES) :: fgmres integer :: it, k, j real(8) :: tt if (it < 0) then call VecCopy(vguess, vdest) return endif ! 回代求解上三角系统 nrs(it+1) = fgmres%rs(it+1) / fgmres%hh(it+1, it+1) do k = it, 1, -1 tt = fgmres%rs(k) do j = k+1, it+1 tt = tt - fgmres%hh(k,j) * nrs(j) end do nrs(k) = tt / fgmres%hh(k,k) end do ! 组合解向量 call VecSet(fgmres%temp, 0.0d0) do j = 1, it+1 call VecAXPY(fgmres%temp, nrs(j), fgmres%prevecs(j)) end do if (.not. same_vector(vdest, vguess)) then call VecCopy(fgmres%temp, vdest) call VecAXPY(vdest, 1.0d0, vguess) else call VecAXPY(vguess, 1.0d0, fgmres%temp) endif end subroutine KSPFGMRESBuildSoln ! 其他辅助函数... end module fgmres_module ``` ### 关键算法说明 1. **预处理灵活性** FGMRES 的核心创新是允许每次迭代改变预处理算子: ```fortran call KSP_PCApply(ksp, fgmres%vv(loc_it+1), fgmres%prevecs(loc_it+1)) ``` 2. **Krylov 子空间构建** 使用预处理后的向量构建非标准 Krylov 子空间: $$ \mathcal{K}_m = \text{span}\{z_0, z_1, ..., z_{m-1}\} $$ 其中 $z_i = M_i^{-1}v_i$($M_i$ 可变的预处理算子) 3. **快乐分解处理** 当新方向向量范数过小时提前终止迭代: ```fortran hapbnd = min(fgmres%haptol, abs(tt / fgmres%rs(loc_it+1))) ``` 4. **上三角系统求解** 使用回代法求解 Hessenberg 系统: ```fortran do k = it, 1, -1 tt = fgmres%rs(k) do j = k+1, it+1 tt = tt - fgmres%hh(k,j) * nrs(j) end do nrs(k) = tt / fgmres%hh(k,k) end do ``` ### 转换注意事项 1. **索引调整** Fortran 数组索引从 1 开始(C 从 0),需调整所有数组访问: - C: `VEC_VV(0)` → Fortran: `vv(1)` - C: `HH(i,j)` → Fortran: `hh(i+1,j+1)` 2. **内存管理** Fortran 需显式分配预处理向量: ```fortran allocate(fgmres%prevecs(max_k+2)) ``` 3. **PETSc 对象处理** 使用 `type(tVec)`, `type(tMat)` 等派生类型封装 PETSc 对象 4. **回调函数** 通过函数指针实现预处理器修改接口: ```fortran abstract interface subroutine modifypc_fn(ksp, its, loc_it, res_norm, ctx) import :: tKSP type(tKSP) :: ksp integer :: its, loc_it real(8) :: res_norm type(*) :: ctx end subroutine end interface ``` ### 相关问题
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值