数据结构树,二叉树,后续有理解到的或有用到在新增,其他很多高级树多是基于二叉树,
主要来自慕课
此处知乎上的一些说法,可进一步根据这些深入学习,现在还未学习数据库和后台,先了解下,
主要用途多是查找、删除、插入等的操作
二叉树
定义:
应用
code
function BinaryTree (){
// "use strict";
var Node = function (key) {
this.key = key;
this.left = null;
this.right = null;
};
var root = null;
var insertNode = function (node, newNode) {
if(newNode.key < node.key){
if(node.left === null){
node.left = newNode;
} else{
insertNode(node.left, newNode);
}
}else {
if (node.right === null){
node.right = newNode;
}else {
insertNode(node.right, newNode);
}
}
}
this.insert = function (key) {
var newNode = new Node(key);
if(root === null){
root = newNode;
}else {
insertNode( root, newNode);
}
};
var inOrderTraverseNode = function (node, callback) {
if(node !== null){
inOrderTraverseNode(node.left, callback);
callback(node.key);
inOrderTraverseNode(node.right, callback);
}
};
//中序遍历api接口,输出从小到大
this.inOrderTraverse = function (callback) {
inOrderTraverseNode(root, callback);
};
var preOrderTraverseNode = function (node,callback) {
if(node !== null){
callback(node.key);
preOrderTraverseNode(node.left, callback);
preOrderTraverseNode(node.right, callback);
}
};
//前序遍历,
this.preOrderTraverse = function (callback) {
preOrderTraverseNode(root, callback);
};
var postOrderTraverseNode = function (node, callback) {
if (node !== null){
postOrderTraverseNode(node.left, callback);
postOrderTraverseNode(node.right, callback);
callback(node.key);
}
}
//后序遍历,
this.postOrderTraverse = function (callback) {
postOrderTraverseNode(root, callback);
}
var minNode = function (node) {
if (node){
while(node && node.left !== null){
node = node.left;
}
return node.key;
}
return null;
}
//查找最小值
this.min = function () {
return minNode(root);
}
var maxNode = function (node) {
if(node){
while(node && node.right !== null){
node = node.right;
}
return node.key;
}
return null;
}
//查找最大值
this.max = function () {
return maxNode(root);
}
var searchNode = function (node, key) {
if(node === null){
return false;
}
if (key < node.key){
return searchNode(node.left, key);
}else if (key > node.key){
return searchNode(node.right, key);
}else {
return true;
}
};
//查找任意值
this.search = function (key) {
return searchNode(root, key);
}
var finMinNode = function (node) {
if (node){
while (node && node.left !== null){
node = node.left;
}
return node;
}
};
var removeNode = function (node, key) {
if(node === null){
return null;
}
if (key < node.key){
node.left = removeNode(node.left, key);
return node;
} else if (key > node.key){
node.right = removeNode(node.right, key);
return node;
}else {
//删除叶子节点的条件
if (node.left === null && node.right === null){
node = null;
return node;
}
//删除中间节点(只有下边一侧的节点)
if (node.left === null){
node = node.right;
return node;
}else if (node.right === null){
node = node.left;
return node;
}
//删除中间节点(还有下边两侧节点)
var aux = findMinNode(node.right);
node.key = aux.key;
node.right = removeNode(node.right, aux.key);
return node;
}
};
//删除子节点
this.remove = function (key) {
root = removeNode(root, key);
}
}
var nodes = [8,3,10,1,6,14,4,7,13];
var binaryTree = new BinaryTree();
nodes.forEach(function (key) {
binaryTree.insert(key);
});
var callback = function (key) {
console.log(key);
}
binaryTree.inOrderTraverse(callback);
binaryTree.preOrderTraverse(callback);
binaryTree.postOrderTraverse(callback);
// alert('binaryTrees min value is' + binaryTree.min());
// alert('binaryTrees max value is' + binaryTree.max());
// alert(binaryTree.search(10) ? 'search 10 in binaryTree success!' : 'search 10 in binaryTree fail!');
// alert(binaryTree.search(9) ? 'search 9 in binaryTree success!' : 'search 9 in binaryTree fail!');
binaryTree.remove(1);
binaryTree.remove(10);
binaryTree.remove(3);
binaryTree.inOrderTraverse(callback);
console.log(binaryTree);
762

被折叠的 条评论
为什么被折叠?



