牛顿插值法的递归实现(C++)
示例
2 115 100 121 144
#include <iostream>
#include <vector>
using namespace std;
double yFunc(double x);
double diff_quotient(vector<double> xi, vector<double> yi);
int main(int argc, const char * argv[]) {
cout<<"请输入插值的次数"<<endl;
int t;
cin>>t;
double m;
cout<<"请输入待估计的x"<<endl;
cin>>m;
vector<double> x;
vector<double> y;
double temp;
for (int i = 0; i <= t; i++) {
cout<<"请每次输入一个插值节点"<<endl;
cin>>temp;
x.push_back(temp);
}
for (double i : x) {
y.push_back(yFunc(i));
}
double result = 0;
for (int i = 0; i <= t; ++i) {
double w = 1;
for (int j = 0; j < (x.size() - 1); ++j) {
w *= (m - x[j]);
}
result += diff_quotient(x, y) * w;
x.pop_back();
y.pop_back();
}
cout<<result<<endl;
return 0;
}
double diff_quotient(vector<double> xi, vector<double> yi){
if (yi.size() == 1) {
return yi[0];
}
else{
vector<double> slicex, slicey;
for (int i = 1; i < xi.size(); ++i) {
slicex.push_back(xi[i]);
slicey.push_back(yi[i]);
}
vector<double> slice_x, slice_y;
for (int i = 0; i < (xi.size()-1); ++i) {
slice_x.push_back(xi[i]);
slice_y.push_back(yi[i]);
}
double re;
re = (diff_quotient(slicex, slicey) - diff_quotient(slice_x, slice_y))/(xi[xi.size()-1] - xi[0]);
return re;
}
}
double yFunc(double x){
double re = sqrt(x);
return re;
}
5735

被折叠的 条评论
为什么被折叠?



