数据结构图的基本操作--邻接表法(不包括深度、广度算法)

本文介绍了一种使用邻接表存储结构实现图的基本操作,包括创建图、销毁图、定位顶点、获取顶点值等,并展示了如何通过邻接表进行遍历。

基本操作代码如下

#include <iostream>
#include <cstdlib>
using namespace std; 
#define MAX_VERTEX_NUM 20
#define ERROR -1
int visited[10000];
typedef struct arcnode//结点的组成域
{
	int adjvex;
	struct arcnode *nextarc;//指向下一条弧的指针
	int *info;//该弧相关信息指针
}arcnode;
typedef struct vnode{//表头结点
	int data;//结点名字
	arcnode *firsarc;
	int value;
}vnode,adjlist[MAX_VERTEX_NUM];
typedef struct{//图
	adjlist vertices;
	int vexnum, arcnum;//当前顶点数,弧数
	int kind;
}algraph;
int LocateVex(algraph &G, int &v1);
void creategraph(algraph &G,int v,int vr)
{
	arcnode *p, *q;
	int v1, v2;
	int i, j, k,n;
	G.vexnum = v;
	G.arcnum = vr;
	cout << "录入各个结点名字:" << endl;
	for (i = 0; i < v; i++)//录入顶点名字,值,且将依附该顶点的第一条指针附空
	{
		cin >> G.vertices[i].data;
		G.vertices[i].firsarc = NULL;
	}
	cout << "输入弧头弧尾,创建边:" << endl;
	for (k = 0; k<G.arcnum; k++) //创建边,并连接头结点  
	{
		cin >> v1;  //v1为弧尾  
		cin >> v2;   //v2为弧头  
		i = LocateVex(G, v1); j = LocateVex(G, v2);

		if (G.vertices[i].firsarc == NULL)  //如果链表为空新建一个表节点,让头节点的指针指向该表节点  
		{
			p = (arcnode *)new arcnode;
			G.vertices[i].firsarc = p;
			q = G.vertices[i].firsarc;
		}
		else        //链表的插入  
		{
			q = G.vertices[i].firsarc;//获取头结点的表头指针  
			for (n = 0; n<G.arcnum; n++, q = q->nextarc)//将q指针移动至链表的尾巴处  
			{
				if (!q->nextarc)
					break;
			}
			p = (arcnode *)new arcnode;
			q->nextarc = p; //将该边(弧)加入到链表中  
			q = q->nextarc;
		}
		q->adjvex = j;  //记录弧头的索引  
		q->nextarc = NULL;
	}
	cout << "图构建成功!"<<endl;
}
void destory(algraph &G)//销毁该图
{
	for (int i = 0; i < G.vexnum; i++)
	{
		G.vertices[i].firsarc = NULL;
	}
}
int LocateVex(algraph &G, int &v1)   //查找节点V1在图G的存储节点数组中的索引位置  
{
	int i;
	for (i = 0; i<G.vexnum; i++)
	{
		if (G.vertices[i].data == v1) //如果数组中有这个节点,返回该节点在数组中的索引  
			return i;
	}
	if (i >= G.vexnum)
		return ERROR;
	else
		return 0;
}
int getvex(algraph &G,int v)//得到定点v的值
{
	for (int i = 0; i < G.vexnum; i++)
	{
		if (v == G.vertices[i].data)
			return G.vertices[i].value;
	}
	return ERROR;
}
void putvex(algraph &G,int v)//为定点v录入值
{
	cout << "输入结点" << v << "值:" << endl;
	for (int i = 0; i < G.vexnum; i++)
	{
		if (v == G.vertices[i].data)
			cin >> G.vertices[i].value;
	}
}
int firstadjvex(algraph &G,int v)
{
	for (int i = 0; i < G.vexnum;i++)
	if (G.vertices[i].data == v)
		cout << G.vertices[G.vertices[i].firsarc->adjvex].data << endl;
	return 0;
}
int next(algraph &G, int v, int w)
{
	arcnode *p=NULL;
	for (int i = 0; i < G.vexnum;i++)
	if (G.vertices[i].data == v)
		p = G.vertices[i].firsarc;
	if (G.vertices[p->adjvex].data == w&&p->nextarc != NULL)
		cout << G.vertices[p->nextarc->adjvex].data << endl;
	else	
	for (int i = 0; i < G.arcnum; i++){
		p = p->nextarc;
		if (G.vertices[p->adjvex].data == w&&p->nextarc != NULL)
			cout << G.vertices[p->nextarc->adjvex].data << endl;
		else if (p->nextarc != NULL)
			continue;
		else
			return ERROR;
	}
}

void shuchu(algraph &G)
{
	arcnode *p;
	for (int i = 0; i < G.vexnum; i++)
	{
		if (G.vertices[i].data == 0)
			continue;
		else{
			cout << G.vertices[i].data << "->";
			p = G.vertices[i].firsarc;
			for (int j = 0; j < G.arcnum; j++)
			{
				if (p != NULL)
				{
					cout << G.vertices[p->adjvex].data << "->";
					p = p->nextarc;
				}
				else
					break;
			}
			cout <<"^"<< endl;
		}
	}
}
int main()
{
    algraph G;
	int v, vr;
	int v1,v2;
	cout << "输入图的节点数量,边的数量:" << endl;
	cin >> v >> vr;
	creategraph(G, v, vr);
	cout << "输入结点名字,用来给结点赋值:" << endl;
	cin >> v1;
	putvex(G, v1);
	cout << "输入结点名字,用来输出结点值:" << endl;
	cin >> v1;
	cout << "输出结点" << v1 << "的值:" << endl;
	if (getvex(G, v1)<0)
		cout << "该顶点未录入值" << endl;
	else
		cout << getvex(G, v1) << endl;
	cout << "输入结点名字,用来输出结点的第一个邻接结点:" << endl;
	cin >> v1;
	cout << "该结点为:" << endl;
	firstadjvex(G, v1);
	cout << "" << endl;
	cout << "输入结点v1,并输入结点v1的某个邻接结点v2,用来输出v1的邻接结点中v2的下一个结点:" << endl;
	cin >> v1 >> v2;
	cout << "该结点为:" << endl;
	next(G, v1, v2);
	cout << "该邻接表输出结果为:" << endl;
	shuchu(G);
	system("pause");
	return 0;
}


评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值