ES-HyperNEAT、视网膜问题与协同进化探索
1. ES-HyperNEAT实验流程
在进行视网膜问题的实验时,首先需要对构建的探测器人工神经网络(ANN)进行评估,具体代码如下:
outputs = net.NumOutputs()
hidden = len(net.neurons) - net.NumInputs() - net.NumOutputs()
print("\n\tinputs: %d, outputs: %d, hidden: %d" % (inputs, outputs, hidden))
# Test against random retina configuration
l_index = random.randint(0, 15)
r_index = random.randint(0, 15)
left = rt_environment.visual_objects[l_index]
right = rt_environment.visual_objects[r_index]
err, outputs = rt_environment._evaluate(net, left, right, 3)
print("Test evaluation error: %f" % err)
print("Left flag: %f, pattern: %s" % (outputs[0], left))
print("Right flag: %f, pattern: %s" % (outputs[1], right))
# Test against all visual objects
fitness, avg_err
超级会员免费看
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



