The complex class

本文介绍了一个简单的复数类的实现,包括复数的基本运算如加法,并重载了运算符以支持复数间的操作。同时实现了复数的前缀和后缀递增操作,并提供了打印复数的方法。
// File name : complex.h

#ifndef _COMPLEX_H_
#define _COMPLEX_H_
#include <iostream>
using namespace std;

class  complex {
public:
	complex(double x = 0, double y = 0) {
		real = x;
		imag = y;
	}
	complex(complex &src) {
		real = src.real;
		imag = src.imag;
	}
	~complex() {}

	complex operator+(const complex& src) const{
		return complex(real + src.real, imag + src.imag);
	}
	complex& operator=(const complex& src) {
		real = src.real;
		imag = src.imag;
		return (*this);
	}
	void operator++(int) {
		cout << "call post++"<<endl;
		imag = imag + 1;
	}
	void operator++() {
		cout << "call pre++"<<endl;
		real = real + 1;
	}
	void print(ostream& out) {
		if(real != 0) out<<real;
		if(imag > 0)  out<<"+"<<imag<<"j";
		else if(imag < 0)  out<<imag<<"j";
		if(real == 0 && imag == 0)  out<<"0";
	}

private:
	double real;
	double imag; 

};

ostream& operator<<(ostream& out, complex& obj) {
	obj.print(out);
	return out;
}

#endif

1. Problem Description: A complex number is a number of the form a +bi, where a and b are real numbers and i is √-1 The numbers a and b are known as the real part and imaginary part of the complex number, respectively. You can perform addition, subtraction, multiplication, and division for complex numbers using the following formula: a+bi+c+di=(a+c)+(b+d)i a+bi-(c+di)=(a-c)+(b-d)i 第2页共2页 (a+bi)*(c+di)=(ac-bd)+(bc+ad)i (a+bi)/c+di)=(ac+bd)/c²+d²)+(bc-ad)i/(c²+d²) You can also obtain the absolute value for a complex number using the following formula: latbil=√a²+b (A complex number can be interpreted as a point on a plane by identifying the (a, b) values as the coordinates of the point. The absolute value of the complex number corresponds to the distance of the point to the origin, as shown in Figure 13.12b.) Design a class named Complex for representing complex numbers and the methods add, subtract, multiply, divide, abs for performing complex-number operations, and override toString method for returning a string representation for a complex number. The toString method returns a + bi as a string. If b is 0, it simply returns a. Provide three constructors Complex(a, b), Complex(a), and Complex(). Complex() creates a Complex object for number 0 and Complex(a) creates a Complex object with 0 for b. Also provide the getRealPart() and getlmaginaryPart() methods for returning the real and imaginary part of the complex number, respectively. Your Complex class should also implement the Cloneable interface. Write a test program that prompts the user to enter two complex numbers and display the result of their addition, subtraction, multiplication, and division. Here is a sample run: <Output> Enter the first complex number: 3.5 5.5 Enter the second complex number:-3.5 1 (3.5 + 5.5i) +(-3.5 + 1.0i)= 0.0 + 6.5 (3.5 + 5.5i)-(-3.5 + 1.0i)= 7.0 + 4.5i (3.5 + 5.5i)*(-3.5 + 1.0i) =-17.75 +-15.75i (3.5 + 5.5i) /(-3.5 + 1.0i)=-0.5094 +-1.7i |3.5 + 5.5il = 6.519202405202649 <End Output>
06-09
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值