【数学】数列极限(宇哥笔记)

本文深入探讨了数列极限的概念,解析了数列极限的性质与判定方法,包括直接计算法、单调有界法则、定义法、夹逼准则等,并通过多个例题详细阐述了如何求解数列极限,旨在帮助读者掌握数列极限的求解技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

定义

数列

按照一定顺序排列的“有开头无结尾”的数叫(无穷)数列。

x1,x2,…,xn,…首项通项 x_1,x_2,\ldots,x_n,\ldots\\ \quad首项\quad\quad\quad通项\quad\quad x1,x2,,xn,
数列极限
∀ϵ&gt;0,∃N&gt;0,n&gt;N时,∣xn−A∣&lt;ϵ&ThickSpace;⟺&ThickSpace;lim⁡n→∞xn=A&ThickSpace;⟺&ThickSpace;{xn}收敛于A[注]1.n为正整数;2.lim⁡n→∞xn+1=A也常用 \forall\epsilon&gt;0,\exists N&gt;0,n&gt;N时,\mid x_n-A\mid&lt;\epsilon\iff\lim_{n\to\infty}x_n=A\iff \lbrace x_n\rbrace收敛于A\\ \color{grey}[注]1.n为正整数;2.\lim_{n\to\infty}x_{n+1}=A也常用 ϵ>0,N>0,n>NxnA<ϵnlimxn=A{xn}A[]1.n2.nlimxn+1=A

性质

1.唯一性 lim⁡n→∞xn=A&ThickSpace;⟹&ThickSpace;A唯一            2.有界性 lim⁡n→∞xn=A&ThickSpace;⟹&ThickSpace;∣xn∣≤M     3.保号性 若xn≥0,lim⁡n→∞xn=A,则A≥0 1.唯一性\ \lim_{n\to\infty}x_n=A\implies A唯一\ \ \ \ \ \ \ \ \ \ \ \ \\ 2.有界性\ \lim_{n\to\infty}x_n=A\implies\mid x_n\mid\leq M\ \ \ \ \ \\ 3.保号性\ 若x_n\geq0,\lim_{n\to\infty}x_n=A,则A\geq0\\ 1. nlimxn=AA            2. nlimxn=AxnM     3. xn0,nlimxn=A,A0
考法

1.直接计算法
2.单调有界法则
3.定义法
4.夹逼准则
5.定积分定义

直接计算法

两个公式:1.Sn=a+aq+aq2+…+aqn−1=a(1−qn)1−q(q̸=1)2.∣q∣&lt;1,lim⁡n→∞Sn=lim⁡n→∞a(1−qn)1−q=a1−q 两个公式:1.S_n=a+aq+aq^2+\ldots+aq^{n-1}=\frac{a(1-q^n)}{1-q}(q\not=1)\\2.\mid q\mid&lt;1,\lim_{n\to\infty}S_n=\lim_{n\to\infty}\frac{a(1-q^n)}{1-q}=\frac{a}{1-q}\\ 1.Sn=a+aq+aq2++aqn1=1qa(1qn)(q̸=1)2.q<1,nlimSn=nlim1qa(1qn)=1qa
[例1]设a0=0,a1=1,an+an−1=2an+1,求lim⁡n→∞an \color{maroon}[例1]设a_0=0,a_1=1,a_n+a_{n-1}=2a_{n+1},求\lim_{n\to\infty}a_n\\ [1]a0=0,a1=1,an+an1=2an+1,nliman
[分析]an+1=an+an−12&ThickSpace;⟹&ThickSpace;做差an+1−an=an+an−12−an=an−1−an2=−12(an−an−1)=(−12)n(a1−a0)即an+1−an=(−12)n ∴an=(an−an−1)+(an−1−an−2)+(an−2−an−3)+…+(a1−a0)+a0=(−12)n−1+(−12)n−2+…+1=1⋅[1−(−12)n]1−(−12)故lim⁡n→∞an=lim⁡n→∞1−(−12)n1−(−12)=23 [分析]a_{n+1}=\frac{a_n+a_{n-1}}{2}\implies\\做差a_{n+1}-a_n=\frac{a_n+a_{n-1}}{2}-a_n=\frac{a_{n-1}-a_{n}}{2}=-\frac12(a_n-a_{n-1})\\ =(-\frac12)^n(a_1-a_0)\\ 即a_{n+1}-a_n=(-\frac12)^n \ \therefore a_n=(a_n-a_{n-1})+(a_{n-1}-a_{n-2})+(a_{n-2}-a_{n-3})+\ldots+(a_1-a_0)+a_0\\ =(-\frac12)^{n-1}+(-\frac12)^{n-2}+\ldots+1=\frac{1\cdot[1-(-\frac12)^n]}{1-(-\frac12)} \\ 故\lim_{n\to\infty}a_n=\lim_{n\to\infty}\frac{1-(-\frac12)^n}{1-(-\frac12)}=\frac23 []an+1=2an+an1an+1an=2an+an1an=2an1an=21(anan1)=(21)n(a1a0)an+1an=(21)n an=(anan1)+(an1an2)+(an2an3)++(a1a0)+a0=(21)n1+21)n2++1=1(21)1[1(21)n]nliman=nlim1(21)1(21)n=32
[变体一]设x1=1,x2=2,xn+2=xn+1⋅xn,求lim⁡n→∞xn \color{maroon}[变体一]设x_1=1,x_2=2,x_{n+2}=\sqrt{x_{n+1}\cdot x_n},求\lim_{n\to\infty}x_n\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\\ []x1=1,x2=2,xn+2=xn+1xn,nlimxn
[分析]取对数,ln⁡xn+2=ln⁡xn+1⋅xn=12ln⁡xn+1+12ln⁡xn令yn=ln⁡xn&ThickSpace;⟹&ThickSpace;yn+2=12(yn+1+yn)故yn+2−yn+1=12(yn+1+yn)−yn+1=−12(yn+1−yn)=(−12)n(y2−y1)=ln⁡2(−12)nyn=(yn−yn−1)+(yn−1−yn−2)+…+(y2−y1)+y1=ln⁡2[(−12)n−2+(−12)n−3+…+1]    =ln⁡2⋅1⋅[1−(−12)n−1]1−(−12)&ThickSpace;⟹&ThickSpace;lim⁡n→∞yn=ln⁡2⋅23=lim⁡n→∞ln⁡xn&ThickSpace;⟹&ThickSpace;lim⁡n→∞xn=e23ln⁡2=223 [分析]取对数,\ln{x_{n+2}}=\ln{\sqrt{x_{n+1}\cdot x_n}}=\frac12\ln{x_{n+1}}+\frac12\ln x_n\qquad\qquad\qquad\qquad\qquad\qquad\qquad\\ 令y_n=\ln{x_n}\implies y_{n+2}=\frac12(y_{n+1}+y_n)\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\\ 故 y_{n+2}-y_{n+1}=\frac12(y_{n+1}+y_n)-y_{n+1}=-\frac12(y_{n+1}-y_n)=(-\frac12)^n(y_2-y_1)=\ln 2(-\frac12)^n\qquad\\ y_n=(y_n-y_{n-1})+(y_{n-1}-y_{n-2})+\ldots+(y_2-y_1)+y_1=\ln2[(-\frac12)^{n-2}+(-\frac12)^{n-3}+\ldots+1]\\ \ \ \ \ =\ln2\cdot\frac{1\cdot[1-(-\frac12)^{n-1}]}{1-(-\frac12)}\implies\lim_{n\to\infty}y_n=\ln2\cdot\frac23=\lim_{n\to\infty}\ln x_n\implies\lim_{n\to\infty}x_n=e^{\frac23\ln 2}=2^{\frac23} []lnxn+2=lnxn+1xn=21lnxn+1+21lnxnyn=lnxnyn+2=21(yn+1+yn)yn+2yn+1=21(yn+1+yn)yn+1=21(yn+1yn)=(21)n(y2y1)=ln2(21)nyn=(ynyn1)+(yn1yn2)++(y2y1)+y1=ln2[(21)n2+(21)n3++1]    =ln21(21)1[1(21)n1]nlimyn=ln232=nlimlnxnnlimxn=e32ln2=232
[变体二]设a1=1,a2=2,an+2=2anan+1an+an+1,n=1,2,…(Ⅰ)求bn=1an+1−1an的表达式并求∑k=1nbk(Ⅱ)求lim⁡n→∞an \color{maroon}[变体二]设a_1=1,a_2=2,a_{n+2}=\frac{2a_na_{n+1}}{a_n+a_{n+1}},n=1,2,\ldots\\ \color{maroon}(Ⅰ)求b_n=\frac{1}{a_{n+1}}-\frac1{a_n}的表达式并求\sum_{k=1}^nb_k\qquad\qquad\qquad\\ \color{maroon}(Ⅱ)求\lim_{n\to\infty}a_n\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\\ []a1=1,a2=2,an+2=an+an+12anan+1,n=1,2,()bn=an+11an1k=1nbk()nliman
[分析](Ⅰ)求倒数1an+2=an+an+12anan+1=12(1an+1an+1)     ∴1an+2−1an+1=12(1an+1an+1)−1an+1    =(−12)(1an+1−1an)=(−12)n(1a2−1a1)=(−12)n+1bn=1an+1−1an=(−12)n∑k=1nbk=(−12)1+(−12)2+…+(−12)n=(−12)[1−(−12)n]1−(−12)(Ⅱ)∑k=1nbk=b1+b2+…+bk=(1a2−1a1)+(1a3−1a2)+…+(1an+1−1an)=1an+1−1a1&ThickSpace;⟹&ThickSpace;an+1=1∑k=1nbk+1故lim⁡n→∞an+1=32 [分析](Ⅰ)求倒数\frac{1}{a_{n+2}}=\frac{a_n+a_{n+1}}{2a_na_{n+1}}=\frac12(\frac1{a_{n}}+\frac1{a_{n+1}})\ \ \ \ \ \\ \therefore\frac{1}{a_{n+2}}-\frac{1}{a_{n+1}}=\frac12(\frac1{a_{n}}+\frac1{a_{n+1}})-\frac{1}{a_{n+1}}\\ \ \ \ \ \qquad\qquad=(-\frac12)(\frac{1}{a_{n+1}}-\frac{1}{a_{n}})\\ \qquad\qquad\qquad\qquad\qquad=(-\frac12)^n(\frac{1}{a_{2}}-\frac{1}{a_{1}})=(-\frac12)^{n+1}\\ b_n=\frac{1}{a_{n+1}}-\frac1{a_n}=(-\frac12)^n\qquad\qquad\\ \qquad\qquad\sum_{k=1}^nb_k=(-\frac12)^1+(-\frac12)^2+\ldots+(-\frac12)^n=\frac{(-\frac12)[1-(-\frac12)^n]}{1-(-\frac12)}\\ (Ⅱ)\sum_{k=1}^nb_k=b_1+b_2+\ldots+b_k\qquad\qquad\qquad\qquad\\ =(\frac{1}{a_{2}}-\frac{1}{a_{1}})+(\frac{1}{a_{3}}-\frac{1}{a_{2}})+\ldots+(\frac{1}{a_{n+1}}-\frac{1}{a_{n}})\\ =\frac{1}{a_{n+1}}-\frac{1}{a_1}\implies a_{n+1}=\frac{1}{\sum_{k=1}^nb_k+1}\qquad\quad\\ 故\lim_{n\to\infty}a_{n+1}=\frac32\qquad\qquad\qquad\qquad\qquad\qquad\qquad []()an+21=2anan+1an+an+1=21(an1+an+11)     an+21an+11=21(an1+an+11)an+11    =(21)(an+11an1)=(21)n(a21a11)=(21)n+1bn=an+11an1=(21)nk=1nbk=(21)1+(21)2++(21)n=1(21)(21)[1(21)n]()k=1nbk=b1+b2++bk=(a21a11)+(a31a21)++(an+11an1)=an+11a11an+1=k=1nbk+11nliman+1=23

单调有界准则

定义{{xn}↑且有上界{xn}↓且有下界&ThickSpace;⟹&ThickSpace;lim⁡n→∞xn存在要点{作差xn+1−xn作商xn+1xn数学归纳法、不等式、有提示xn+1=f(x),证明lim⁡n→∞存在并求之 \left.定义\begin{cases}\lbrace x_n\rbrace\uparrow且有上界\\\lbrace x_n\rbrace\downarrow且有下界 \end{cases}\right.\implies\lim_{n\to\infty}x_n存在\qquad\quad\\ \left.要点\begin{cases}作差x_{n+1}-x_n\\作商\frac{x_{n+1}}{x_n}\end{cases}\right.数学归纳法、不等式、有提示\\ x_{n+1}=f(x),证明\lim_{n\to\infty}存在并求之\qquad\qquad\qquad {{xn}{xn}nlimxn{xn+1xnxnxn+1xn+1=f(x),nlim
[例1]{an}↓,{bn}↑,lim⁡n→∞(an−bn)=0,证明lim⁡n→∞an=lim⁡n→∞bn=存在 \color{maroon}[例1]\lbrace a_n\rbrace\downarrow,\lbrace b_n\rbrace\uparrow,\lim_{n\to\infty}(a_n-b_n)=0,证明\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n=存在\qquad\qquad\\ [1]{an},{bn},nlim(anbn)=0,nliman=nlimbn=
[分析]由于lim⁡n→∞(an−bn)=0∃&ThickSpace;⟹&ThickSpace;A≤an−bn≤B(极限若存在,数列必有界)∴an≥A+bn≥A+b 下界  bn≤an−A≤a1−A 上界由于极限存在,lim⁡n→∞(an−bn)=lim⁡n→∞an−lim⁡n→∞bn=0 [分析]由于\lim_{n\to\infty}(a_n-b_n)=0\exists\implies A\leq a_n-b_n\leq B(极限若存在,数列必有界)\\ \therefore a_n\geq A+b_n\geq A+b \ 下界 \ \ b_n\leq a_n-A\leq a_1-A \ 上界\qquad\qquad\\ 由于极限存在,\lim_{n\to\infty}(a_n-b_n)=\lim_{n\to\infty}a_n-\lim_{n\to\infty}b_n=0\qquad\qquad\qquad []nlim(anbn)=0AanbnB()anA+bnA+b   bnanAa1A nlim(anbn)=nlimannlimbn=0
[例2]x1=2,xn+(xn−4)xn−1=3,n=2,3…,证明lim⁡n→∞xn存在并求之 \color{maroon}[例2]x_1=2,x_n+(x_n-4)x_{n-1}=3,n=2,3\ldots,证明\lim_{n\to\infty}x_n存在并求之\qquad\qquad\qquad\qquad\qquad\quad\\ [2]x1=2,xn+(xn4)xn1=3,n=2,3,nlimxn
[分析]{1.x1=2,x2=3+4⋅21+2=113&gt;x1&gt;02.设xk&gt;xk−1&gt;03.证明xk+1−xk=3+axk1+xk−3+4xk−11+xk−1=xk−xk−1(1+xk)(1+xk+1)&gt;0&ThickSpace;⟹&ThickSpace;xk+1&gt;xk&gt;0&ThickSpace;⟹&ThickSpace;{xn}↑xn=3+4xn−11+xn−1=4+4xn−1−11+xn−1=4−11+xn−1&lt;4故lim⁡n→∞xn=a&ThickSpace;⟹&ThickSpace;A=3+4A1+A&ThickSpace;⟹&ThickSpace;A=3±212由xn&gt;0&ThickSpace;⟹&ThickSpace;A≥0&ThickSpace;⟹&ThickSpace;A=3+212 [分析]\begin{cases}1.x_1=2,x_2=\frac{3+4\cdot 2}{1+2}=\frac{11}3&gt;x_1&gt;0\\2.设x_k&gt;x_{k-1}&gt;0\\ 3.证明x_{k+1}-x_k=\frac{3+ax_k}{1+x_k}-\frac{3+4x_{k-1}}{1+x_{k-1}}=\frac{x_k-x_{k-1}}{(1+x_k)(1+x_{k+1})}&gt;0\implies x_{k+1}&gt;x_k&gt;0\implies\lbrace x_n\rbrace\uparrow\end{cases} \\x_n=\frac{3+4x_{n-1}}{1+x_{n-1}}=\frac{4+4x_{n-1}-1}{1+x_{n-1}}=4-\frac{1}{1+x_{n-1}}&lt;4\qquad\qquad\qquad\qquad\qquad\qquad\\ 故\lim_{n\to\infty}x_n=a\implies A=\frac{3+4A}{1+A}\implies A=\frac{3\pm\sqrt{21}}{2}\qquad\qquad\qquad\qquad\qquad\qquad\quad\\ 由x_n&gt;0\implies A\geq0\implies A=\frac{3+\sqrt{21}}{2}\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad []1.x1=2,x2=1+23+42=311>x1>02.xk>xk1>03.xk+1xk=1+xk3+axk1+xk13+4xk1=(1+xk)(1+xk+1)xkxk1>0xk+1>xk>0{xn}xn=1+xn13+4xn1=1+xn14+4xn11=41+xn11<4nlimxn=aA=1+A3+4AA=23±21xn>0A0A=23+21
[例3]a&gt;0,xn=ann!,n=1,2,…,证明lim⁡n→∞xn存在并求之 \color{maroon}[例3]a&gt;0,x_n=\frac{a_n}{n!},n=1,2,\ldots,证明\lim_{n\to\infty}x_n存在并求之\qquad\qquad\qquad\qquad\qquad\qquad\qquad\\ [3]a>0,xn=n!an,n=1,2,,nlimxn
[分析]显然xn&gt;0,xn+1xn=an+1(n+1)!⋅n!an=an+1    当n+1&gt;a&gt;0 即 n&gt;a−1时,an+1&lt;1&ThickSpace;⟹&ThickSpace;xn+1xn&lt;1&ThickSpace;⟹&ThickSpace;xn+1&lt;xn&ThickSpace;⟹&ThickSpace;{xn}↓得lim⁡n→∞xn=A且xn+1=an+1xn&ThickSpace;⟹&ThickSpace;A=0⋅A=0 [分析]显然x_n&gt;0,\frac{x_{n+1}}{x_n}=\frac{a_{n+1}}{(n+1)!}\cdot\frac{n!}{a_n}=\frac a{n+1}\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\ \ \ \ \\ 当n+1&gt;a&gt;0\ 即\ n&gt;a-1时,\frac{a}{n+1}&lt;1\implies \frac{x_{n+1}}{x_n}&lt;1\implies x_{n+1}&lt;x_n\implies \lbrace x_n\rbrace\downarrow\\ 得\lim_{n\to\infty}x_n=A且x_{n+1}=\frac{a}{n+1}x_n\implies A=0\cdot A=0\qquad\qquad\qquad\qquad\qquad\qquad\qquad\quad[]xn>0,xnxn+1=(n+1)!an+1ann!=n+1a    n+1>a>0  n>a1n+1a<1xnxn+1<1xn+1<xn{xn}nlimxn=Axn+1=n+1axnA=0A=0
[例4]设f(x)在[0,+∞)上连续,0≤f(x)≤x1,x∈[0,+∞),若a1≥0,an+1=f(an),n=1,2,…(Ⅰ)证明lim⁡n→∞an存在,记为A,且A=f(A)(Ⅱ)若条件改为0≤f(x)&lt;x,x∈(0,+∞),求lim⁡n→∞an    \color{maroon}[例4]设f(x)在[0,+\infty)上连续,0\leq f(x)\leq x_1,x\in[0,+\infty),若a_1\geq0,a_{n+1}=f(a_n),n=1,2,\ldots\\ \color{maroon}(Ⅰ)证明\lim_{n\to\infty}a_n存在,记为A,且A=f(A)\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\quad\\ \color{maroon}(Ⅱ)若条件改为0\leq f(x)&lt;x,x\in(0,+\infty),求\lim_{n\to\infty}a_n\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\ \ \ \\ [4]f(x)[0,+)0f(x)x1,x[0,+),a10,an+1=f(an),n=1,2,()nlimanAA=f(A)()0f(x)<x,x(0,+),nliman   
[分析](Ⅰ)an+1−an=f(an)−an≤0,显然an+1=f(an)≥0&ThickSpace;⟹&ThickSpace;an+1≤an&ThickSpace;⟹&ThickSpace;{an}↓ &ThickSpace;⟹&ThickSpace;lim⁡n→∞an   存在   →A=lim⁡n→∞f(an)   连续   →f(lim⁡n→∞an)=f(A)      (Ⅱ)an≥0&ThickSpace;⟹&ThickSpace;A≥0,若A&gt;0,f(A)&lt;A,与A=f(A)矛盾,故A=0&ThickSpace;⟹&ThickSpace;lim⁡n→∞an=0 [分析](Ⅰ)a_{n+1}-a_n=f(a_n)-a_n\leq0,显然a_{n+1}=f(a_n)\geq0\implies a_{n+1}\leq a_n\implies\lbrace a_n\rbrace\downarrow\qquad\ \\ \implies\lim_{n\to\infty}a_n\underrightarrow{\ \ \ 存在\ \ \ }A=\lim_{n\to\infty}f(a_n)\underrightarrow{\ \ \ 连续\ \ \ }f(\lim_{n\to\infty}a_n)=f(A)\qquad\qquad\qquad\qquad\\ \ \ \ \ \ \ (Ⅱ)a_n\geq0\implies A\geq0,若A&gt;0,f(A)&lt;A,与A=f(A)矛盾,故A=0\implies \lim_{n\to\infty}a_n=0[]()an+1an=f(an)an0,an+1=f(an)0an+1an{an} nliman      A=nlimf(an)      f(nliman)=f(A)      ()an0A0,A>0,f(A)<A,A=f(A)A=0nliman=0

定义法

构造∣xn−a∣&ThickSpace;⟹&ThickSpace;xn−a→0,即lim⁡n→∞xn=a{放缩法拉格朗日:f(b)−f(a)=f′(ξ)(b−a) 构造\mid x_n-a\mid\implies x_n-a\rightarrow0,即\lim_{n\to\infty}x_n=a\begin{cases}放缩法\\拉格朗日:f(b)-f(a)=f&#x27;(\xi)(b-a)\end{cases} xnaxna0,nlimxn=a{:f(b)f(a)=f(ξ)(ba)
[例1]x1≥−12,xn+1=12+xn,n=1,2,…,求lim⁡n→∞xn \color{maroon}[例1]x_1\geq-12,x_{n+1}=\sqrt{12+x_n},n=1,2,\ldots,求\lim_{n\to\infty}x_n\\ [1]x112,xn+1=12+xn,n=1,2,,nlimxn
[分析]若lim⁡n→∞xn=A,则A=12+A,则A=4构造∣xn−4∣=∣12+xn−1−4∣=∣xn−1∣−412+xn−1+4≤14∣xn−1−4∣≤(14)2∣xn−2−4∣≤(14)n−1∣x1−4∣lim⁡n→∞∣xn−4∣=0&ThickSpace;⟹&ThickSpace;lim⁡n→∞xn=4 [分析]\color{grey}若\lim_{n\to\infty}x_n=A,则A=\sqrt{12+A},则A=4\\ 构造\mid x_n-4\mid=\mid\sqrt{12+x_{n-1}}-4\mid=\frac{\mid x_{n-1}\mid-4}{\sqrt{12+x_{n-1}}+4}\leq\frac14\mid x_{n-1}-4\mid\\ \leq(\frac14)^2\mid x_{n-2}-4\mid\\ \leq(\frac14)^{n-1}\mid x_{1}-4\mid\\ \lim_{n\to\infty}\mid x_{n}-4\mid=0\implies\lim_{n\to\infty}x_n=4\qquad\qquad\qquad\qquad []nlimxn=A,A=12+A,A=4xn4=12+xn14=12+xn1+4xn1441xn14(41)2xn24(41)n1x14nlimxn4=0nlimxn=4
[例2]设f(x)在[a,b]上可导,∣f′(x)∣≤12,对x0∈(a,b)有x0=f(x0),∀x1∈[a,b],xn+1=f(xn),n=1,2,…,证明lim⁡n→∞xn存在且lim⁡n→∞xn=x0 \color{maroon}[例2]设f(x)在[a,b]上可导,\mid f&#x27;(x)\mid\leq\frac12,对x_0\in(a,b)有x_0=f(x_0),\forall x_1\in[a,b],x_{n+1}=f(x_n),n=1,2,\ldots,\\ \color{maroon}证明\lim_{n\to\infty}x_n存在且\lim_{n\to\infty}x_n=x_0\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\\ [2]f(x)[a,b]f(x)21,x0(a,b)x0=f(x0),x1[a,b],xn+1=f(xn),n=1,2,,nlimxnnlimxn=x0
[分析]∣xn−x0∣=∣f(xn−1)−f(x0)∣=∣f′(ξ)∣∣xn−1−x0∣≤12∣xn−1−x0∣≤(12)2∣xn−2−x0∣≤(12)n−1∣x1−x0∣&ThickSpace;⟹&ThickSpace;lim⁡n→∞xn=x0 [分析]\mid x_n-x_0\mid=\mid f(x_{n-1})-f(x_0)\mid=\mid f&#x27;(\xi)\mid\mid x_{n-1}-x_0\mid \\ \leq\frac12\mid x_{n-1}-x_0\mid\\ \leq(\frac12)^2\mid x_{n-2}-x_0\mid \\ \leq(\frac12)^{n-1}\mid x_{1}-x_0\mid \\ \implies\lim_{n\to\infty}x_n=x_0 []xnx0=f(xn1)f(x0)=f(ξ)xn1x021xn1x0(21)2xn2x0(21)n1x1x0nlimxn=x0

夹逼准则

定义{yn≤xn≤zn(不验等号)↓⇓ ↓A→A←A考法{1.∑i=1nui=u1+u2+…+un,n→∞,则n⋅umin≤∑i=1nui≤n⋅umax2.∑i=1nui=u1+u2+…+un,n为有限数,u1≥0,则1⋅umax≤∑i=1nui≤n⋅umax3.有提示 定义\begin{cases}y_n\leq x_n\leq z_n(不验等号)\\ \downarrow\qquad\Downarrow\quad\ \downarrow\\ A\rightarrow A\leftarrow A\end{cases}\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\quad \\ 考法\begin{cases}1.\sum_{i=1}^nu_i=u_1+u_2+\ldots+u_n,n\to\infty,则n\cdot u_{min}\leq\sum_{i=1}^nu_i\leq n\cdot u_{max}\\ 2.\sum_{i=1}^nu_i=u_1+u_2+\ldots+u_n,n为有限数,u_1\geq0,则1\cdot u_{max}\leq\sum_{i=1}^nu_i\leq n\cdot u_{max}\\ 3.有提示\end{cases} ynxnzn() AAA1.i=1nui=u1+u2++un,n,numini=1nuinumax2.i=1nui=u1+u2++un,n,u10,1umaxi=1nuinumax3.
[例1]lim⁡n→∞(1n2−1−1n2−2−1n2−3−…−1n2−n) \color{maroon}[例1]\lim_{n\to\infty}(\frac{1}{\sqrt{n^2-1}}-\frac{1}{\sqrt{n^2-2}}-\frac{1}{\sqrt{n^2-3}}-\ldots-\frac{1}{\sqrt{n^2-n}})\\ [1]nlim(n211n221n231n2n1)
原式=lim⁡n→∞[1n2−1−(1n2−2+1n2−3+…+1n2−n)]n−1n2−2&lt;∑i=2n1n2−i&lt;n−1n2−n↓⇓↓1→1←1而lim⁡n→∞1n2−1=0&ThickSpace;⟹&ThickSpace;I=0−1=−1 原式=\lim_{n\to\infty}[\frac{1}{\sqrt{n^2-1}}-(\frac{1}{\sqrt{n^2-2}}+\frac{1}{\sqrt{n^2-3}}+\ldots+\frac{1}{\sqrt{n^2-n}})]\\ \frac{n-1}{\sqrt{n^2-2}}&lt;\sum_{i=2}^n\frac{1}{\sqrt{n^2-i}}&lt;\frac{n-1}{\sqrt{n^2-n}}\\ \downarrow\qquad\quad\qquad\Downarrow \qquad\qquad\quad \downarrow\\ 1\rightarrow\qquad\quad1\qquad\quad\leftarrow 1\\ 而\lim_{n\to\infty}\frac{1}{\sqrt{n^2-1}}=0\implies I=0-1=-1 =nlim[n211(n221+n231++n2n1)]n22n1<i=2nn2i1<n2nn1111nlimn211=0I=01=1
[例2]求f(x)=lim⁡n→∞1+xn+(x22)nn,x≥0 \color{maroon}[例2]求f(x)=\lim_{n\to\infty}\sqrt[n]{1+x^n+(\frac{x^2}2)^n},x\geq0\\ [2]f(x)=nlimn1+xn+(2x2)n,x0
[分析]1.x∈[0,1)&ThickSpace;⟹&ThickSpace;1n最大,1⋅1nn&lt;1+xn+(x22)nn&lt;3⋅1nn↓⇓↓1→1←12.x∈[1,2)&ThickSpace;⟹&ThickSpace;xn最大3.x∈[2,+∞)&ThickSpace;⟹&ThickSpace;(x22)最大       f(x)={1,x∈[0,1)x,x∈[1,2)x22,x∈[2,+∞)[注]lim⁡∘→∞∘n+∘n+∘nn,∘i≥0,有f(x)={f1,x∈I1f2,x∈I2f3,x∈I3 [分析]1.x\in[0,1)\implies1^n最大,\sqrt[n]{1\cdot1^n}&lt;\sqrt[n]{1+x^n+(\frac{x^2}2)^n}&lt;\sqrt[n]{3\cdot1^n}\\ \qquad\qquad\qquad\qquad\qquad\qquad\downarrow\qquad\quad\qquad\qquad\Downarrow \qquad\qquad\quad \downarrow\\ \qquad\qquad\qquad\qquad\qquad\qquad\qquad1\rightarrow\qquad\quad1\qquad\quad\leftarrow 1\\ 2.x\in[1,2)\implies x^n最大\qquad\qquad\qquad\quad\qquad\qquad\qquad\qquad\\ 3.x\in[2,+\infty)\implies(\frac{x^2}2)最大\qquad\ \ \ \ \ \ \ \quad\qquad\qquad\qquad\qquad\\ f(x)=\begin{cases}1,x\in[0,1)\\x,x\in[1,2)\\\frac{x^2}2,x\in[2,+\infty)\end{cases}\qquad\qquad\qquad\qquad\qquad\qquad\qquad\\ [注]\lim_{\circ\to\infty}\sqrt[n]{\circ^n+\circ^n+\circ^n},\circ_i\geq0,有f(x)=\begin{cases}f_1,x\in I_1\\f_2,x\in I_2\\f_3,x\in I_3\end{cases} []1.x[0,1)1nn11n<n1+xn+(2x2)n<n31n1112.x[1,2)xn3.x[2,+)(2x2)       f(x)=1,x[0,1)x,x[1,2)2x2,x[2,+)[]limnn+n+n,i0,f(x)=f1,xI1f2,xI2f3,xI3
在这里插入图片描述[例3](Ⅰ)设f(x)=x2,f[ϕ(x)]=−x2+2x+3,且ϕ(x)≥0,求ϕ(x)及其定义域与值域(Ⅱ)求lim⁡n→∞2020nn+ϕ(x) \color{maroon}[例3](Ⅰ)设f(x)=x^2,f[\phi(x)]=-x^2+2x+3,且\phi(x)\geq0,求\phi(x)及其定义域与值域\\ \color{maroon}(Ⅱ)求\lim_{n\to\infty}\frac{2020n}{n+\phi (x)}\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\quad\\ [3]()f(x)=x2,f[ϕ(x)]=x2+2x+3,ϕ(x)0,ϕ(x)()nlimn+ϕ(x)2020n
[分析](Ⅰ)f[ϕ(x)]=ϕ2(x)=−x2+2x+3,∵ϕ(x)≥0∴ϕ(x)=−x2+2x+3∴定义域为x∈[−1,3],值域为[0,2](Ⅱ)2020nn+2≤2020nn+ϕ(x)≤2020nn=2020 [分析](Ⅰ)f[\phi(x)]=\phi^2(x)=-x^2+2x+3,\because\phi(x)\geq0\therefore\phi(x)=\sqrt{-x^2+2x+3}\\ \therefore定义域为x\in[-1,3],值域为[0,2]\qquad\qquad\qquad\qquad\qquad\qquad\qquad\\ (Ⅱ)\frac{2020n}{n+2}\leq\frac{2020n}{n+\phi(x)}\leq\frac{2020n}{n}=2020\qquad\qquad\qquad\qquad\qquad\qquad []()f[ϕ(x)]=ϕ2(x)=x2+2x+3,ϕ(x)0ϕ(x)=x2+2x+3x[1,3],[0,2]()n+22020nn+ϕ(x)2020nn2020n=2020

定积分定义法

定义

很早人们就发现了一个矩形的面积是底∗高底*高,而一个边为曲线的图形呢?
在这里插入图片描述
黎曼(1826-1866)发现,将这种图形任意分割成n份,就可以粗略的看到一个个小矩形。
在这里插入图片描述
随着分割地越来越多,矩形也就变的越来越细。
在这里插入图片描述
一个矩形的面积是可以求得的,那么当这些矩形无限细的时候就可以通过求他们的面积和来得到曲边图形的面积,由于是黎曼最早提出的,定积分也叫做黎曼积分。
在这里插入图片描述
1.[a,b]n等分,每段长度为b−an2.取右端点的高→f(a+b−ani)∴lim⁡n→∞∑i=1nf(a+b−ani)b−an=∫abf(x)dx[小结]1.lim⁡x→∞∑i=1n=lim⁡x→∞∑i=0n−1(区别是前者取右端点,后者取左端点)2.lim⁡x→∞∑i=1nf(a+b−ani)b−an=∫abf(x)dx3.lim⁡x→∞∑i=1nf(0+1−0ni)1−0n=∫01f(x)dx4.lim⁡x→∞∑i=1nf(0+x−0ni)x−0n=∫0xf(x)dx 1.[a,b]n等分,每段长度为\frac{b-a}{n}\qquad\qquad\qquad\qquad\\ 2.取右端点的高\rightarrow f(a+\frac{b-a}{n}i)\qquad\qquad\qquad\qquad\\ \color{teal}\therefore \lim_{n\to\infty}\sum_{i=1}^nf(a+\frac{b-a}{n}i)\frac{b-a}{n}=\int_a^bf(x)dx\qquad\qquad\\ \color{red}{[小结]}\qquad\qquad\\1.\lim_{x\to\infty}\sum_{i=1}^n=\lim_{x\to\infty}\sum_{i=0}^{n-1}(区别是前者取右端点,后者取左端点)\\ 2.\lim_{x\to\infty}\sum_{i=1}^nf(a+\frac{b-a}{n}i)\frac{b-a}{n}=\int_a^bf(x)dx\qquad\qquad\qquad\\ 3.\lim_{x\to\infty}\sum_{i=1}^nf(0+\frac{1-0}{n}i)\frac{1-0}{n}=\int_0^1f(x)dx\qquad\qquad\qquad\\ 4.\lim_{x\to\infty}\sum_{i=1}^nf(0+\frac{x-0}{n}i)\frac{x-0}{n}=\int_0^xf(x)dx\qquad\qquad\qquad\\ 1.[a,b]nnba2.f(a+nbai)nlimi=1nf(a+nbai)nba=abf(x)dx[]1.xlimi=1n=xlimi=0n12.xlimi=1nf(a+nbai)nba=abf(x)dx3.xlimi=1nf(0+n10i)n10=01f(x)dx4.xlimi=1nf(0+nx0i)nx0=0xf(x)dx
例题
在这里插入图片描述[例1]求lim⁡n→∞(1n+1+1n+2+…+1n+n)[分析]通式=lim⁡n→∞∑i=1n1n+i=lim⁡n→∞∑i=1n11+1n⋅1n=∫0111+xdx=ln⁡2对比:lim⁡n→∞(nn2+1+nn2+2+…+nn2+n),其通式为lim⁡n→∞∑i=1nnn2+i=lim⁡n→∞∑i=1nn2n2+i⋅1n应该用夹逼法则,n2n2+n&lt;∑i=1nnn2+i&lt;n2n2+1[例2]求lim⁡n→∞(n+1n2+1+n+2n2+4+n+3n2+9+…+n+nn2+n2)[分析]通式=lim⁡n→∞∑i=1nn+in2+i2=lim⁡n→∞∑i=1nn2+nin2+i2⋅1n=lim⁡n→∞∑i=1n1+(in)1+(1n)2⋅1n=∫011+x1−xdx=4π+12ln⁡2[例3]求lim⁡n→∞(1n2+n+1n2+2n+…+1n2+n2)[分析]通式=lim⁡n→∞∑i=1n1n2+in=lim⁡n→∞∑i=1n11+in⋅1n=∫0111+xdx=22−2[例4]已知f(x)=ax3,a&gt;0且a̸=1,计算lim⁡n→∞1n4ln⁡[f(1)f(2)…f(a)][分析]原式=lim⁡n→∞1n4ln⁡(a13⋅a23⋅…⋅an3)=lim⁡n→∞1n4(13ln⁡a+23ln⁡a+…+n3ln⁡a)=ln⁡alim⁡n→∞∑i=1ni3n4=ln⁡alim⁡n→∞∑i=1n(in)3⋅1n=ln⁡a⋅∫01x3dx=14ln⁡a \color{maroon}[例1]求\lim_{n\to\infty}(\frac{1}{n+1}+\frac{1}{n+2}+\ldots+\frac{1}{n+n})\\ \color{black}[分析]通式=\lim_{n\to\infty}\sum_{i=1}^n\frac{1}{n+i}=\lim_{n\to\infty}\sum_{i=1}^n\frac{1}{1+\frac{1}{n}}\cdot\frac1n=\int_0^1\frac{1}{1+x}dx=\ln{2}\\ \color{grey}对比:\lim_{n\to\infty}(\frac{n}{n^2+1}+\frac{n}{n^2+2}+\ldots+\frac{n}{n^2+n}),其通式为\lim_{n\to\infty}\sum_{i=1}^n\frac{n}{n^2+i}=\lim_{n\to\infty}\sum_{i=1}^n\frac{n^2}{n^2+i}\cdot\frac1n\\ \color{grey}应该用夹逼法则,\frac{n^2}{n^2+n}&lt;\sum_{i=1}^n\frac{n}{n^2+i}&lt;\frac{n^2}{n^2+1}\\ \color{maroon}[例2]求\lim_{n\to\infty}(\frac{n+1}{n^2+1}+\frac{n+2}{n^2+4}+\frac{n+3}{n^2+9}+\ldots+\frac{n+n}{n^2+n^2})\\ \color{black}[分析]通式=\lim_{n\to\infty}\sum_{i=1}^n\frac{n+i}{n^2+i^2}=\lim_{n\to\infty}\sum_{i=1}^n\frac{n^2+ni}{n^2+i^2}\cdot\frac1n=\lim_{n\to\infty}\sum_{i=1}^n\frac{1+(\frac in)}{1+(\frac1n)^2}\cdot\frac1n=\int_0^1\frac{1+x}{1-x}dx=\frac4\pi+\frac12\ln2\\ \color{maroon}[例3]求\lim_{n\to\infty}(\frac{1}{\sqrt{n^2+n}}+\frac{1}{\sqrt{n^2+2n}}+\ldots+\frac{1}{\sqrt{n^2+n^2}})\\ \color{black}[分析]通式=\lim_{n\to\infty}\sum_{i=1}^n\frac{1}{\sqrt{n^2+in}}=\lim_{n\to\infty}\sum_{i=1}^n\frac{1}{\sqrt{1+\frac in}}\cdot\frac1n=\int_0^1\frac{1}{\sqrt{1+x}}dx=2\sqrt2-2\\ \color{maroon}[例4]已知f(x)=a^{x^3},a&gt;0且a\not=1,计算\lim_{n\to\infty}\frac{1}{n^4}\ln[f(1)f(2)\ldots f(a)]\\ \color{black}[分析]原式=\lim_{n\to\infty}\frac{1}{n^4}\ln(a^{1^3}\cdot a^{2^3}\cdot \ldots \cdot a^{n^3})=\lim_{n\to\infty}\frac{1}{n^4}(1^3\ln a+2^3\ln a+\ldots+n^3\ln a)\\=\ln a\lim_{n\to\infty}\sum_{i=1}^n\frac{i^3}{n^4}=\ln a\lim_{n\to\infty}\sum_{i=1}^n(\frac in)^3\cdot \frac1n=\ln a\cdot\int_0^1x^3dx=\frac14\ln a [1]nlim(n+11+n+21++n+n1)[]=nlimi=1nn+i1=nlimi=1n1+n11n1=011+x1dx=ln2:nlim(n2+1n+n2+2n++n2+nn),nlimi=1nn2+in=nlimi=1nn2+in2n1n2+nn2<i=1nn2+in<n2+1n2[2]nlim(n2+1n+1+n2+4n+2+n2+9n+3++n2+n2n+n)[]=nlimi=1nn2+i2n+i=nlimi=1nn2+i2n2+nin1=nlimi=1n1+(n1)21+(ni)n1=011x1+xdx=π4+21ln2[3]nlim(n2+n1+n2+2n1++n2+n21)[]=nlimi=1nn2+in1=nlimi=1n1+ni1n1=011+x1dx=222[4]f(x)=ax3,a>0a̸=1,nlimn41ln[f(1)f(2)f(a)][]=nlimn41ln(a13a23an3)=nlimn41(13lna+23lna++n3lna)=lnanlimi=1nn4i3=lnanlimi=1n(ni)3n1=lna01x3dx=41lna
[小结]能直接凑出in的基本形{1.n+i (an+bi)2.n2+i23.n2+ni4.in \color{red}[小结]\\ 能直接凑出\frac in的基本形\begin{cases}1.n+i\ (an+bi)\\2.n^2+i^2\\3.n^2+ni\\4.\frac in \end{cases} []ni1.n+i (an+bi)2.n2+i23.n2+ni4.ni
[例5]求lim⁡n→∞(1n+1n+1n+1+1n+1n+4+1n+…+1n+(n−1)2+1n)[分析]记xn=∑i=0n−11n+i2+1n=∑i=0n−111+i2+1n2⋅1n∵i2&lt;i2+1&lt;(i+1)2∴∑i=0n−111+(i+1n)2⋅1n&lt;xn&lt;∑i=0n−111+(in)2⋅1n∵∑i=0n−111+(i+1n)2⋅1n=∑i=1n11+(in)2⋅1n∴两边放缩,得:∫0111+x2dx=4π[小结]放缩法(凑不出in){1.夹逼法则,如lim⁡n→∞nn2+1+nn2+2+…+nn2+n=12.放缩后再凑in,如上例 \color{maroon}[例5]求\lim_{n\to\infty}(\frac{1}{n+\frac1n}+\frac{1}{n+\frac{1+1}{n}}+\frac{1}{n+\frac{4+1}{n}}+\ldots+\frac{1}{n+\frac{(n-1)^2+1}{n}})\\ \color{black}[分析]记x_n=\sum_{i=0}^{n-1}\frac{1}{n+\frac{i^2+1}{n}}=\sum_{i=0}^{n-1}\frac{1}{1+\frac{i^2+1}{n^2}}\cdot\frac1n\\ \because i^2&lt;i^2+1&lt;(i+1)^2\\ \therefore \sum_{i=0}^{n-1}\frac{1}{1+(\frac{i+1}{n})^2}\cdot\frac1n&lt;x_n&lt;\sum_{i=0}^{n-1}\frac{1}{1+(\frac in)^2}\cdot\frac1n\\ \because \sum_{i=0}^{n-1}\frac{1}{1+(\frac{i+1}{n})^2}\cdot\frac1n=\sum_{i=1}^{n}\frac{1}{1+(\frac in)^2}\cdot\frac1n\\ \therefore 两边放缩,得:\int_0^1\frac{1}{1+x^2}dx=\frac4\pi\\ \color{red}[小结]\\ 放缩法(凑不出\frac in)\begin{cases}1.夹逼法则,如\lim_{n\to\infty}\frac{n}{n^2+1}+\frac{n}{n^2+2}+\ldots+\frac{n}{n^2+n}=1\\2.放缩后再凑\frac in,如上例 \end{cases} [5]nlim(n+n11+n+n1+11+n+n4+11++n+n(n1)2+11)[]xn=i=0n1n+ni2+11=i=0n11+n2i2+11n1i2<i2+1<(i+1)2i=0n11+(ni+1)21n1<xn<i=0n11+(ni)21n1i=0n11+(ni+1)21n1=i=1n1+(ni)21n1011+x21dx=π4[]ni{1.limnn2+1n+n2+2n++n2+nn=12.ni
[例6]求lim⁡n→∞(xn+x+xn+2x+…+xn+nx),x&gt;0解:lim⁡n→∞∑i=1nxn+x⋅i=lim⁡n→∞∑i=1n11+x⋅in⋅xn=∫0x11+tdt=ln⁡(1+x)[例7]求lim⁡n→∞(sinxn+sin2xn+…+sinx)xn,x&gt;0解:lim⁡n→∞∑i=1nsinxin⋅xn=∫0xsintdt=1−cosx[小结]变量形:lim⁡x→∞∑i=1nf(0+x−0ni)x−0n=∫0xf(x)dx \color{maroon}[例6]求\lim_{n\to\infty}(\frac{x}{n+x}+\frac{x}{n+2x}+\ldots+\frac{x}{n+nx}),x&gt;0\\ \color{black}解:\lim_{n\to\infty}\sum_{i=1}^n\frac{x}{n+x\cdot i}=\lim_{n\to\infty}\sum_{i=1}^n\frac{1}{1+x\cdot \frac in}\cdot\frac xn=\int_0^x\frac{1}{1+t}dt=\ln(1+x)\\ \color{maroon}[例7]求\lim_{n\to\infty}(sin\frac xn+sin\frac{2x}{n}+\ldots+sinx)\frac xn,x&gt;0\\ \color{black}解:\lim_{n\to\infty}\sum_{i=1}^nsin\frac{xi}{n}\cdot\frac xn=\int_0^xsintdt=1-cosx\\ \color{red}[小结]\\ 变量形:\lim_{x\to\infty}\sum_{i=1}^nf(0+\frac{x-0}{n}i)\frac{x-0}{n}=\int_0^xf(x)dx[6]nlim(n+xx+n+2xx++n+nxx),x>0nlimi=1nn+xix=nlimi=1n1+xni1nx=0x1+t1dt=ln(1+x)[7]nlim(sinnx+sinn2x++sinx)nx,x>0nlimi=1nsinnxinx=0xsintdt=1cosx[]xlimi=1nf(0+nx0i)nx0=0xf(x)dx

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值