定义
数列
按照一定顺序排列的“有开头无结尾”的数叫(无穷)数列。
x1,x2,…,xn,…首项通项
x_1,x_2,\ldots,x_n,\ldots\\
\quad首项\quad\quad\quad通项\quad\quad
x1,x2,…,xn,…首项通项
数列极限
∀ϵ>0,∃N>0,n>N时,∣xn−A∣<ϵ  ⟺  limn→∞xn=A  ⟺  {xn}收敛于A[注]1.n为正整数;2.limn→∞xn+1=A也常用
\forall\epsilon>0,\exists N>0,n>N时,\mid x_n-A\mid<\epsilon\iff\lim_{n\to\infty}x_n=A\iff \lbrace x_n\rbrace收敛于A\\
\color{grey}[注]1.n为正整数;2.\lim_{n\to\infty}x_{n+1}=A也常用
∀ϵ>0,∃N>0,n>N时,∣xn−A∣<ϵ⟺n→∞limxn=A⟺{xn}收敛于A[注]1.n为正整数;2.n→∞limxn+1=A也常用
性质
1.唯一性 limn→∞xn=A  ⟹  A唯一 2.有界性 limn→∞xn=A  ⟹  ∣xn∣≤M 3.保号性 若xn≥0,limn→∞xn=A,则A≥0
1.唯一性\ \lim_{n\to\infty}x_n=A\implies A唯一\ \ \ \ \ \ \ \ \ \ \ \ \\
2.有界性\ \lim_{n\to\infty}x_n=A\implies\mid x_n\mid\leq M\ \ \ \ \ \\
3.保号性\ 若x_n\geq0,\lim_{n\to\infty}x_n=A,则A\geq0\\
1.唯一性 n→∞limxn=A⟹A唯一 2.有界性 n→∞limxn=A⟹∣xn∣≤M 3.保号性 若xn≥0,n→∞limxn=A,则A≥0
考法
1.直接计算法
2.单调有界法则
3.定义法
4.夹逼准则
5.定积分定义
直接计算法
两个公式:1.Sn=a+aq+aq2+…+aqn−1=a(1−qn)1−q(q̸=1)2.∣q∣<1,limn→∞Sn=limn→∞a(1−qn)1−q=a1−q
两个公式:1.S_n=a+aq+aq^2+\ldots+aq^{n-1}=\frac{a(1-q^n)}{1-q}(q\not=1)\\2.\mid q\mid<1,\lim_{n\to\infty}S_n=\lim_{n\to\infty}\frac{a(1-q^n)}{1-q}=\frac{a}{1-q}\\
两个公式:1.Sn=a+aq+aq2+…+aqn−1=1−qa(1−qn)(q̸=1)2.∣q∣<1,n→∞limSn=n→∞lim1−qa(1−qn)=1−qa
[例1]设a0=0,a1=1,an+an−1=2an+1,求limn→∞an
\color{maroon}[例1]设a_0=0,a_1=1,a_n+a_{n-1}=2a_{n+1},求\lim_{n\to\infty}a_n\\
[例1]设a0=0,a1=1,an+an−1=2an+1,求n→∞liman
[分析]an+1=an+an−12  ⟹  做差an+1−an=an+an−12−an=an−1−an2=−12(an−an−1)=(−12)n(a1−a0)即an+1−an=(−12)n ∴an=(an−an−1)+(an−1−an−2)+(an−2−an−3)+…+(a1−a0)+a0=(−12)n−1+(−12)n−2+…+1=1⋅[1−(−12)n]1−(−12)故limn→∞an=limn→∞1−(−12)n1−(−12)=23
[分析]a_{n+1}=\frac{a_n+a_{n-1}}{2}\implies\\做差a_{n+1}-a_n=\frac{a_n+a_{n-1}}{2}-a_n=\frac{a_{n-1}-a_{n}}{2}=-\frac12(a_n-a_{n-1})\\
=(-\frac12)^n(a_1-a_0)\\
即a_{n+1}-a_n=(-\frac12)^n
\ \therefore a_n=(a_n-a_{n-1})+(a_{n-1}-a_{n-2})+(a_{n-2}-a_{n-3})+\ldots+(a_1-a_0)+a_0\\
=(-\frac12)^{n-1}+(-\frac12)^{n-2}+\ldots+1=\frac{1\cdot[1-(-\frac12)^n]}{1-(-\frac12)} \\
故\lim_{n\to\infty}a_n=\lim_{n\to\infty}\frac{1-(-\frac12)^n}{1-(-\frac12)}=\frac23
[分析]an+1=2an+an−1⟹做差an+1−an=2an+an−1−an=2an−1−an=−21(an−an−1)=(−21)n(a1−a0)即an+1−an=(−21)n ∴an=(an−an−1)+(an−1−an−2)+(an−2−an−3)+…+(a1−a0)+a0=(−21)n−1+(−21)n−2+…+1=1−(−21)1⋅[1−(−21)n]故n→∞liman=n→∞lim1−(−21)1−(−21)n=32
[变体一]设x1=1,x2=2,xn+2=xn+1⋅xn,求limn→∞xn
\color{maroon}[变体一]设x_1=1,x_2=2,x_{n+2}=\sqrt{x_{n+1}\cdot x_n},求\lim_{n\to\infty}x_n\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\\
[变体一]设x1=1,x2=2,xn+2=xn+1⋅xn,求n→∞limxn
[分析]取对数,lnxn+2=lnxn+1⋅xn=12lnxn+1+12lnxn令yn=lnxn  ⟹  yn+2=12(yn+1+yn)故yn+2−yn+1=12(yn+1+yn)−yn+1=−12(yn+1−yn)=(−12)n(y2−y1)=ln2(−12)nyn=(yn−yn−1)+(yn−1−yn−2)+…+(y2−y1)+y1=ln2[(−12)n−2+(−12)n−3+…+1] =ln2⋅1⋅[1−(−12)n−1]1−(−12)  ⟹  limn→∞yn=ln2⋅23=limn→∞lnxn  ⟹  limn→∞xn=e23ln2=223
[分析]取对数,\ln{x_{n+2}}=\ln{\sqrt{x_{n+1}\cdot x_n}}=\frac12\ln{x_{n+1}}+\frac12\ln x_n\qquad\qquad\qquad\qquad\qquad\qquad\qquad\\
令y_n=\ln{x_n}\implies y_{n+2}=\frac12(y_{n+1}+y_n)\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\\
故 y_{n+2}-y_{n+1}=\frac12(y_{n+1}+y_n)-y_{n+1}=-\frac12(y_{n+1}-y_n)=(-\frac12)^n(y_2-y_1)=\ln 2(-\frac12)^n\qquad\\
y_n=(y_n-y_{n-1})+(y_{n-1}-y_{n-2})+\ldots+(y_2-y_1)+y_1=\ln2[(-\frac12)^{n-2}+(-\frac12)^{n-3}+\ldots+1]\\
\ \ \ \ =\ln2\cdot\frac{1\cdot[1-(-\frac12)^{n-1}]}{1-(-\frac12)}\implies\lim_{n\to\infty}y_n=\ln2\cdot\frac23=\lim_{n\to\infty}\ln x_n\implies\lim_{n\to\infty}x_n=e^{\frac23\ln 2}=2^{\frac23}
[分析]取对数,lnxn+2=lnxn+1⋅xn=21lnxn+1+21lnxn令yn=lnxn⟹yn+2=21(yn+1+yn)故yn+2−yn+1=21(yn+1+yn)−yn+1=−21(yn+1−yn)=(−21)n(y2−y1)=ln2(−21)nyn=(yn−yn−1)+(yn−1−yn−2)+…+(y2−y1)+y1=ln2[(−21)n−2+(−21)n−3+…+1] =ln2⋅1−(−21)1⋅[1−(−21)n−1]⟹n→∞limyn=ln2⋅32=n→∞limlnxn⟹n→∞limxn=e32ln2=232
[变体二]设a1=1,a2=2,an+2=2anan+1an+an+1,n=1,2,…(Ⅰ)求bn=1an+1−1an的表达式并求∑k=1nbk(Ⅱ)求limn→∞an
\color{maroon}[变体二]设a_1=1,a_2=2,a_{n+2}=\frac{2a_na_{n+1}}{a_n+a_{n+1}},n=1,2,\ldots\\
\color{maroon}(Ⅰ)求b_n=\frac{1}{a_{n+1}}-\frac1{a_n}的表达式并求\sum_{k=1}^nb_k\qquad\qquad\qquad\\
\color{maroon}(Ⅱ)求\lim_{n\to\infty}a_n\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\\
[变体二]设a1=1,a2=2,an+2=an+an+12anan+1,n=1,2,…(Ⅰ)求bn=an+11−an1的表达式并求k=1∑nbk(Ⅱ)求n→∞liman
[分析](Ⅰ)求倒数1an+2=an+an+12anan+1=12(1an+1an+1) ∴1an+2−1an+1=12(1an+1an+1)−1an+1 =(−12)(1an+1−1an)=(−12)n(1a2−1a1)=(−12)n+1bn=1an+1−1an=(−12)n∑k=1nbk=(−12)1+(−12)2+…+(−12)n=(−12)[1−(−12)n]1−(−12)(Ⅱ)∑k=1nbk=b1+b2+…+bk=(1a2−1a1)+(1a3−1a2)+…+(1an+1−1an)=1an+1−1a1  ⟹  an+1=1∑k=1nbk+1故limn→∞an+1=32
[分析](Ⅰ)求倒数\frac{1}{a_{n+2}}=\frac{a_n+a_{n+1}}{2a_na_{n+1}}=\frac12(\frac1{a_{n}}+\frac1{a_{n+1}})\ \ \ \ \ \\
\therefore\frac{1}{a_{n+2}}-\frac{1}{a_{n+1}}=\frac12(\frac1{a_{n}}+\frac1{a_{n+1}})-\frac{1}{a_{n+1}}\\
\ \ \ \ \qquad\qquad=(-\frac12)(\frac{1}{a_{n+1}}-\frac{1}{a_{n}})\\
\qquad\qquad\qquad\qquad\qquad=(-\frac12)^n(\frac{1}{a_{2}}-\frac{1}{a_{1}})=(-\frac12)^{n+1}\\
b_n=\frac{1}{a_{n+1}}-\frac1{a_n}=(-\frac12)^n\qquad\qquad\\
\qquad\qquad\sum_{k=1}^nb_k=(-\frac12)^1+(-\frac12)^2+\ldots+(-\frac12)^n=\frac{(-\frac12)[1-(-\frac12)^n]}{1-(-\frac12)}\\
(Ⅱ)\sum_{k=1}^nb_k=b_1+b_2+\ldots+b_k\qquad\qquad\qquad\qquad\\
=(\frac{1}{a_{2}}-\frac{1}{a_{1}})+(\frac{1}{a_{3}}-\frac{1}{a_{2}})+\ldots+(\frac{1}{a_{n+1}}-\frac{1}{a_{n}})\\
=\frac{1}{a_{n+1}}-\frac{1}{a_1}\implies a_{n+1}=\frac{1}{\sum_{k=1}^nb_k+1}\qquad\quad\\
故\lim_{n\to\infty}a_{n+1}=\frac32\qquad\qquad\qquad\qquad\qquad\qquad\qquad
[分析](Ⅰ)求倒数an+21=2anan+1an+an+1=21(an1+an+11) ∴an+21−an+11=21(an1+an+11)−an+11 =(−21)(an+11−an1)=(−21)n(a21−a11)=(−21)n+1bn=an+11−an1=(−21)nk=1∑nbk=(−21)1+(−21)2+…+(−21)n=1−(−21)(−21)[1−(−21)n](Ⅱ)k=1∑nbk=b1+b2+…+bk=(a21−a11)+(a31−a21)+…+(an+11−an1)=an+11−a11⟹an+1=∑k=1nbk+11故n→∞liman+1=23
单调有界准则
定义{{xn}↑且有上界{xn}↓且有下界  ⟹  limn→∞xn存在要点{作差xn+1−xn作商xn+1xn数学归纳法、不等式、有提示xn+1=f(x),证明limn→∞存在并求之
\left.定义\begin{cases}\lbrace x_n\rbrace\uparrow且有上界\\\lbrace x_n\rbrace\downarrow且有下界
\end{cases}\right.\implies\lim_{n\to\infty}x_n存在\qquad\quad\\
\left.要点\begin{cases}作差x_{n+1}-x_n\\作商\frac{x_{n+1}}{x_n}\end{cases}\right.数学归纳法、不等式、有提示\\
x_{n+1}=f(x),证明\lim_{n\to\infty}存在并求之\qquad\qquad\qquad
定义{{xn}↑且有上界{xn}↓且有下界⟹n→∞limxn存在要点{作差xn+1−xn作商xnxn+1数学归纳法、不等式、有提示xn+1=f(x),证明n→∞lim存在并求之
[例1]{an}↓,{bn}↑,limn→∞(an−bn)=0,证明limn→∞an=limn→∞bn=存在
\color{maroon}[例1]\lbrace a_n\rbrace\downarrow,\lbrace b_n\rbrace\uparrow,\lim_{n\to\infty}(a_n-b_n)=0,证明\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n=存在\qquad\qquad\\
[例1]{an}↓,{bn}↑,n→∞lim(an−bn)=0,证明n→∞liman=n→∞limbn=存在
[分析]由于limn→∞(an−bn)=0∃  ⟹  A≤an−bn≤B(极限若存在,数列必有界)∴an≥A+bn≥A+b 下界 bn≤an−A≤a1−A 上界由于极限存在,limn→∞(an−bn)=limn→∞an−limn→∞bn=0
[分析]由于\lim_{n\to\infty}(a_n-b_n)=0\exists\implies A\leq a_n-b_n\leq B(极限若存在,数列必有界)\\
\therefore a_n\geq A+b_n\geq A+b \ 下界 \ \ b_n\leq a_n-A\leq a_1-A \ 上界\qquad\qquad\\
由于极限存在,\lim_{n\to\infty}(a_n-b_n)=\lim_{n\to\infty}a_n-\lim_{n\to\infty}b_n=0\qquad\qquad\qquad
[分析]由于n→∞lim(an−bn)=0∃⟹A≤an−bn≤B(极限若存在,数列必有界)∴an≥A+bn≥A+b 下界 bn≤an−A≤a1−A 上界由于极限存在,n→∞lim(an−bn)=n→∞liman−n→∞limbn=0
[例2]x1=2,xn+(xn−4)xn−1=3,n=2,3…,证明limn→∞xn存在并求之
\color{maroon}[例2]x_1=2,x_n+(x_n-4)x_{n-1}=3,n=2,3\ldots,证明\lim_{n\to\infty}x_n存在并求之\qquad\qquad\qquad\qquad\qquad\quad\\
[例2]x1=2,xn+(xn−4)xn−1=3,n=2,3…,证明n→∞limxn存在并求之
[分析]{1.x1=2,x2=3+4⋅21+2=113>x1>02.设xk>xk−1>03.证明xk+1−xk=3+axk1+xk−3+4xk−11+xk−1=xk−xk−1(1+xk)(1+xk+1)>0  ⟹  xk+1>xk>0  ⟹  {xn}↑xn=3+4xn−11+xn−1=4+4xn−1−11+xn−1=4−11+xn−1<4故limn→∞xn=a  ⟹  A=3+4A1+A  ⟹  A=3±212由xn>0  ⟹  A≥0  ⟹  A=3+212
[分析]\begin{cases}1.x_1=2,x_2=\frac{3+4\cdot 2}{1+2}=\frac{11}3>x_1>0\\2.设x_k>x_{k-1}>0\\
3.证明x_{k+1}-x_k=\frac{3+ax_k}{1+x_k}-\frac{3+4x_{k-1}}{1+x_{k-1}}=\frac{x_k-x_{k-1}}{(1+x_k)(1+x_{k+1})}>0\implies x_{k+1}>x_k>0\implies\lbrace x_n\rbrace\uparrow\end{cases}
\\x_n=\frac{3+4x_{n-1}}{1+x_{n-1}}=\frac{4+4x_{n-1}-1}{1+x_{n-1}}=4-\frac{1}{1+x_{n-1}}<4\qquad\qquad\qquad\qquad\qquad\qquad\\
故\lim_{n\to\infty}x_n=a\implies A=\frac{3+4A}{1+A}\implies A=\frac{3\pm\sqrt{21}}{2}\qquad\qquad\qquad\qquad\qquad\qquad\quad\\
由x_n>0\implies A\geq0\implies A=\frac{3+\sqrt{21}}{2}\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad
[分析]⎩⎪⎨⎪⎧1.x1=2,x2=1+23+4⋅2=311>x1>02.设xk>xk−1>03.证明xk+1−xk=1+xk3+axk−1+xk−13+4xk−1=(1+xk)(1+xk+1)xk−xk−1>0⟹xk+1>xk>0⟹{xn}↑xn=1+xn−13+4xn−1=1+xn−14+4xn−1−1=4−1+xn−11<4故n→∞limxn=a⟹A=1+A3+4A⟹A=23±21由xn>0⟹A≥0⟹A=23+21
[例3]a>0,xn=ann!,n=1,2,…,证明limn→∞xn存在并求之
\color{maroon}[例3]a>0,x_n=\frac{a_n}{n!},n=1,2,\ldots,证明\lim_{n\to\infty}x_n存在并求之\qquad\qquad\qquad\qquad\qquad\qquad\qquad\\
[例3]a>0,xn=n!an,n=1,2,…,证明n→∞limxn存在并求之
[分析]显然xn>0,xn+1xn=an+1(n+1)!⋅n!an=an+1 当n+1>a>0 即 n>a−1时,an+1<1  ⟹  xn+1xn<1  ⟹  xn+1<xn  ⟹  {xn}↓得limn→∞xn=A且xn+1=an+1xn  ⟹  A=0⋅A=0
[分析]显然x_n>0,\frac{x_{n+1}}{x_n}=\frac{a_{n+1}}{(n+1)!}\cdot\frac{n!}{a_n}=\frac a{n+1}\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\ \ \ \ \\
当n+1>a>0\ 即\ n>a-1时,\frac{a}{n+1}<1\implies \frac{x_{n+1}}{x_n}<1\implies x_{n+1}<x_n\implies \lbrace x_n\rbrace\downarrow\\
得\lim_{n\to\infty}x_n=A且x_{n+1}=\frac{a}{n+1}x_n\implies A=0\cdot A=0\qquad\qquad\qquad\qquad\qquad\qquad\qquad\quad[分析]显然xn>0,xnxn+1=(n+1)!an+1⋅ann!=n+1a 当n+1>a>0 即 n>a−1时,n+1a<1⟹xnxn+1<1⟹xn+1<xn⟹{xn}↓得n→∞limxn=A且xn+1=n+1axn⟹A=0⋅A=0
[例4]设f(x)在[0,+∞)上连续,0≤f(x)≤x1,x∈[0,+∞),若a1≥0,an+1=f(an),n=1,2,…(Ⅰ)证明limn→∞an存在,记为A,且A=f(A)(Ⅱ)若条件改为0≤f(x)<x,x∈(0,+∞),求limn→∞an
\color{maroon}[例4]设f(x)在[0,+\infty)上连续,0\leq f(x)\leq x_1,x\in[0,+\infty),若a_1\geq0,a_{n+1}=f(a_n),n=1,2,\ldots\\
\color{maroon}(Ⅰ)证明\lim_{n\to\infty}a_n存在,记为A,且A=f(A)\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\quad\\
\color{maroon}(Ⅱ)若条件改为0\leq f(x)<x,x\in(0,+\infty),求\lim_{n\to\infty}a_n\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\ \ \ \\
[例4]设f(x)在[0,+∞)上连续,0≤f(x)≤x1,x∈[0,+∞),若a1≥0,an+1=f(an),n=1,2,…(Ⅰ)证明n→∞liman存在,记为A,且A=f(A)(Ⅱ)若条件改为0≤f(x)<x,x∈(0,+∞),求n→∞liman
[分析](Ⅰ)an+1−an=f(an)−an≤0,显然an+1=f(an)≥0  ⟹  an+1≤an  ⟹  {an}↓   ⟹  limn→∞an 存在 →A=limn→∞f(an) 连续 →f(limn→∞an)=f(A) (Ⅱ)an≥0  ⟹  A≥0,若A>0,f(A)<A,与A=f(A)矛盾,故A=0  ⟹  limn→∞an=0
[分析](Ⅰ)a_{n+1}-a_n=f(a_n)-a_n\leq0,显然a_{n+1}=f(a_n)\geq0\implies a_{n+1}\leq a_n\implies\lbrace a_n\rbrace\downarrow\qquad\ \\
\implies\lim_{n\to\infty}a_n\underrightarrow{\ \ \ 存在\ \ \ }A=\lim_{n\to\infty}f(a_n)\underrightarrow{\ \ \ 连续\ \ \ }f(\lim_{n\to\infty}a_n)=f(A)\qquad\qquad\qquad\qquad\\
\ \ \ \ \ \ (Ⅱ)a_n\geq0\implies A\geq0,若A>0,f(A)<A,与A=f(A)矛盾,故A=0\implies \lim_{n\to\infty}a_n=0[分析](Ⅰ)an+1−an=f(an)−an≤0,显然an+1=f(an)≥0⟹an+1≤an⟹{an}↓ ⟹n→∞liman 存在 A=n→∞limf(an) 连续 f(n→∞liman)=f(A) (Ⅱ)an≥0⟹A≥0,若A>0,f(A)<A,与A=f(A)矛盾,故A=0⟹n→∞liman=0
定义法
构造∣xn−a∣  ⟹  xn−a→0,即limn→∞xn=a{放缩法拉格朗日:f(b)−f(a)=f′(ξ)(b−a)
构造\mid x_n-a\mid\implies x_n-a\rightarrow0,即\lim_{n\to\infty}x_n=a\begin{cases}放缩法\\拉格朗日:f(b)-f(a)=f'(\xi)(b-a)\end{cases}
构造∣xn−a∣⟹xn−a→0,即n→∞limxn=a{放缩法拉格朗日:f(b)−f(a)=f′(ξ)(b−a)
[例1]x1≥−12,xn+1=12+xn,n=1,2,…,求limn→∞xn
\color{maroon}[例1]x_1\geq-12,x_{n+1}=\sqrt{12+x_n},n=1,2,\ldots,求\lim_{n\to\infty}x_n\\
[例1]x1≥−12,xn+1=12+xn,n=1,2,…,求n→∞limxn
[分析]若limn→∞xn=A,则A=12+A,则A=4构造∣xn−4∣=∣12+xn−1−4∣=∣xn−1∣−412+xn−1+4≤14∣xn−1−4∣≤(14)2∣xn−2−4∣≤(14)n−1∣x1−4∣limn→∞∣xn−4∣=0  ⟹  limn→∞xn=4
[分析]\color{grey}若\lim_{n\to\infty}x_n=A,则A=\sqrt{12+A},则A=4\\
构造\mid x_n-4\mid=\mid\sqrt{12+x_{n-1}}-4\mid=\frac{\mid x_{n-1}\mid-4}{\sqrt{12+x_{n-1}}+4}\leq\frac14\mid x_{n-1}-4\mid\\
\leq(\frac14)^2\mid x_{n-2}-4\mid\\
\leq(\frac14)^{n-1}\mid x_{1}-4\mid\\
\lim_{n\to\infty}\mid x_{n}-4\mid=0\implies\lim_{n\to\infty}x_n=4\qquad\qquad\qquad\qquad
[分析]若n→∞limxn=A,则A=12+A,则A=4构造∣xn−4∣=∣12+xn−1−4∣=12+xn−1+4∣xn−1∣−4≤41∣xn−1−4∣≤(41)2∣xn−2−4∣≤(41)n−1∣x1−4∣n→∞lim∣xn−4∣=0⟹n→∞limxn=4
[例2]设f(x)在[a,b]上可导,∣f′(x)∣≤12,对x0∈(a,b)有x0=f(x0),∀x1∈[a,b],xn+1=f(xn),n=1,2,…,证明limn→∞xn存在且limn→∞xn=x0
\color{maroon}[例2]设f(x)在[a,b]上可导,\mid f'(x)\mid\leq\frac12,对x_0\in(a,b)有x_0=f(x_0),\forall x_1\in[a,b],x_{n+1}=f(x_n),n=1,2,\ldots,\\
\color{maroon}证明\lim_{n\to\infty}x_n存在且\lim_{n\to\infty}x_n=x_0\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\\
[例2]设f(x)在[a,b]上可导,∣f′(x)∣≤21,对x0∈(a,b)有x0=f(x0),∀x1∈[a,b],xn+1=f(xn),n=1,2,…,证明n→∞limxn存在且n→∞limxn=x0
[分析]∣xn−x0∣=∣f(xn−1)−f(x0)∣=∣f′(ξ)∣∣xn−1−x0∣≤12∣xn−1−x0∣≤(12)2∣xn−2−x0∣≤(12)n−1∣x1−x0∣  ⟹  limn→∞xn=x0
[分析]\mid x_n-x_0\mid=\mid f(x_{n-1})-f(x_0)\mid=\mid f'(\xi)\mid\mid x_{n-1}-x_0\mid \\
\leq\frac12\mid x_{n-1}-x_0\mid\\
\leq(\frac12)^2\mid x_{n-2}-x_0\mid \\
\leq(\frac12)^{n-1}\mid x_{1}-x_0\mid \\
\implies\lim_{n\to\infty}x_n=x_0
[分析]∣xn−x0∣=∣f(xn−1)−f(x0)∣=∣f′(ξ)∣∣xn−1−x0∣≤21∣xn−1−x0∣≤(21)2∣xn−2−x0∣≤(21)n−1∣x1−x0∣⟹n→∞limxn=x0
夹逼准则
定义{yn≤xn≤zn(不验等号)↓⇓ ↓A→A←A考法{1.∑i=1nui=u1+u2+…+un,n→∞,则n⋅umin≤∑i=1nui≤n⋅umax2.∑i=1nui=u1+u2+…+un,n为有限数,u1≥0,则1⋅umax≤∑i=1nui≤n⋅umax3.有提示
定义\begin{cases}y_n\leq x_n\leq z_n(不验等号)\\
\downarrow\qquad\Downarrow\quad\ \downarrow\\
A\rightarrow A\leftarrow A\end{cases}\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\quad \\
考法\begin{cases}1.\sum_{i=1}^nu_i=u_1+u_2+\ldots+u_n,n\to\infty,则n\cdot u_{min}\leq\sum_{i=1}^nu_i\leq n\cdot u_{max}\\
2.\sum_{i=1}^nu_i=u_1+u_2+\ldots+u_n,n为有限数,u_1\geq0,则1\cdot u_{max}\leq\sum_{i=1}^nu_i\leq n\cdot u_{max}\\
3.有提示\end{cases}
定义⎩⎪⎨⎪⎧yn≤xn≤zn(不验等号)↓⇓ ↓A→A←A考法⎩⎪⎨⎪⎧1.∑i=1nui=u1+u2+…+un,n→∞,则n⋅umin≤∑i=1nui≤n⋅umax2.∑i=1nui=u1+u2+…+un,n为有限数,u1≥0,则1⋅umax≤∑i=1nui≤n⋅umax3.有提示
[例1]limn→∞(1n2−1−1n2−2−1n2−3−…−1n2−n)
\color{maroon}[例1]\lim_{n\to\infty}(\frac{1}{\sqrt{n^2-1}}-\frac{1}{\sqrt{n^2-2}}-\frac{1}{\sqrt{n^2-3}}-\ldots-\frac{1}{\sqrt{n^2-n}})\\
[例1]n→∞lim(n2−11−n2−21−n2−31−…−n2−n1)
原式=limn→∞[1n2−1−(1n2−2+1n2−3+…+1n2−n)]n−1n2−2<∑i=2n1n2−i<n−1n2−n↓⇓↓1→1←1而limn→∞1n2−1=0  ⟹  I=0−1=−1
原式=\lim_{n\to\infty}[\frac{1}{\sqrt{n^2-1}}-(\frac{1}{\sqrt{n^2-2}}+\frac{1}{\sqrt{n^2-3}}+\ldots+\frac{1}{\sqrt{n^2-n}})]\\
\frac{n-1}{\sqrt{n^2-2}}<\sum_{i=2}^n\frac{1}{\sqrt{n^2-i}}<\frac{n-1}{\sqrt{n^2-n}}\\
\downarrow\qquad\quad\qquad\Downarrow \qquad\qquad\quad \downarrow\\
1\rightarrow\qquad\quad1\qquad\quad\leftarrow 1\\
而\lim_{n\to\infty}\frac{1}{\sqrt{n^2-1}}=0\implies I=0-1=-1
原式=n→∞lim[n2−11−(n2−21+n2−31+…+n2−n1)]n2−2n−1<i=2∑nn2−i1<n2−nn−1↓⇓↓1→1←1而n→∞limn2−11=0⟹I=0−1=−1
[例2]求f(x)=limn→∞1+xn+(x22)nn,x≥0
\color{maroon}[例2]求f(x)=\lim_{n\to\infty}\sqrt[n]{1+x^n+(\frac{x^2}2)^n},x\geq0\\
[例2]求f(x)=n→∞limn1+xn+(2x2)n,x≥0
[分析]1.x∈[0,1)  ⟹  1n最大,1⋅1nn<1+xn+(x22)nn<3⋅1nn↓⇓↓1→1←12.x∈[1,2)  ⟹  xn最大3.x∈[2,+∞)  ⟹  (x22)最大 f(x)={1,x∈[0,1)x,x∈[1,2)x22,x∈[2,+∞)[注]lim∘→∞∘n+∘n+∘nn,∘i≥0,有f(x)={f1,x∈I1f2,x∈I2f3,x∈I3
[分析]1.x\in[0,1)\implies1^n最大,\sqrt[n]{1\cdot1^n}<\sqrt[n]{1+x^n+(\frac{x^2}2)^n}<\sqrt[n]{3\cdot1^n}\\
\qquad\qquad\qquad\qquad\qquad\qquad\downarrow\qquad\quad\qquad\qquad\Downarrow \qquad\qquad\quad \downarrow\\
\qquad\qquad\qquad\qquad\qquad\qquad\qquad1\rightarrow\qquad\quad1\qquad\quad\leftarrow 1\\
2.x\in[1,2)\implies x^n最大\qquad\qquad\qquad\quad\qquad\qquad\qquad\qquad\\
3.x\in[2,+\infty)\implies(\frac{x^2}2)最大\qquad\ \ \ \ \ \ \ \quad\qquad\qquad\qquad\qquad\\
f(x)=\begin{cases}1,x\in[0,1)\\x,x\in[1,2)\\\frac{x^2}2,x\in[2,+\infty)\end{cases}\qquad\qquad\qquad\qquad\qquad\qquad\qquad\\
[注]\lim_{\circ\to\infty}\sqrt[n]{\circ^n+\circ^n+\circ^n},\circ_i\geq0,有f(x)=\begin{cases}f_1,x\in I_1\\f_2,x\in I_2\\f_3,x\in I_3\end{cases}
[分析]1.x∈[0,1)⟹1n最大,n1⋅1n<n1+xn+(2x2)n<n3⋅1n↓⇓↓1→1←12.x∈[1,2)⟹xn最大3.x∈[2,+∞)⟹(2x2)最大 f(x)=⎩⎪⎨⎪⎧1,x∈[0,1)x,x∈[1,2)2x2,x∈[2,+∞)[注]∘→∞limn∘n+∘n+∘n,∘i≥0,有f(x)=⎩⎪⎨⎪⎧f1,x∈I1f2,x∈I2f3,x∈I3
[例3](Ⅰ)设f(x)=x2,f[ϕ(x)]=−x2+2x+3,且ϕ(x)≥0,求ϕ(x)及其定义域与值域(Ⅱ)求limn→∞2020nn+ϕ(x)
\color{maroon}[例3](Ⅰ)设f(x)=x^2,f[\phi(x)]=-x^2+2x+3,且\phi(x)\geq0,求\phi(x)及其定义域与值域\\
\color{maroon}(Ⅱ)求\lim_{n\to\infty}\frac{2020n}{n+\phi (x)}\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\quad\\
[例3](Ⅰ)设f(x)=x2,f[ϕ(x)]=−x2+2x+3,且ϕ(x)≥0,求ϕ(x)及其定义域与值域(Ⅱ)求n→∞limn+ϕ(x)2020n
[分析](Ⅰ)f[ϕ(x)]=ϕ2(x)=−x2+2x+3,∵ϕ(x)≥0∴ϕ(x)=−x2+2x+3∴定义域为x∈[−1,3],值域为[0,2](Ⅱ)2020nn+2≤2020nn+ϕ(x)≤2020nn=2020
[分析](Ⅰ)f[\phi(x)]=\phi^2(x)=-x^2+2x+3,\because\phi(x)\geq0\therefore\phi(x)=\sqrt{-x^2+2x+3}\\
\therefore定义域为x\in[-1,3],值域为[0,2]\qquad\qquad\qquad\qquad\qquad\qquad\qquad\\
(Ⅱ)\frac{2020n}{n+2}\leq\frac{2020n}{n+\phi(x)}\leq\frac{2020n}{n}=2020\qquad\qquad\qquad\qquad\qquad\qquad
[分析](Ⅰ)f[ϕ(x)]=ϕ2(x)=−x2+2x+3,∵ϕ(x)≥0∴ϕ(x)=−x2+2x+3∴定义域为x∈[−1,3],值域为[0,2](Ⅱ)n+22020n≤n+ϕ(x)2020n≤n2020n=2020
定积分定义法
定义
很早人们就发现了一个矩形的面积是底∗高底*高底∗高,而一个边为曲线的图形呢?
黎曼(1826-1866)发现,将这种图形任意分割成n份,就可以粗略的看到一个个小矩形。
随着分割地越来越多,矩形也就变的越来越细。
一个矩形的面积是可以求得的,那么当这些矩形无限细的时候就可以通过求他们的面积和来得到曲边图形的面积,由于是黎曼最早提出的,定积分也叫做黎曼积分。
1.[a,b]n等分,每段长度为b−an2.取右端点的高→f(a+b−ani)∴limn→∞∑i=1nf(a+b−ani)b−an=∫abf(x)dx[小结]1.limx→∞∑i=1n=limx→∞∑i=0n−1(区别是前者取右端点,后者取左端点)2.limx→∞∑i=1nf(a+b−ani)b−an=∫abf(x)dx3.limx→∞∑i=1nf(0+1−0ni)1−0n=∫01f(x)dx4.limx→∞∑i=1nf(0+x−0ni)x−0n=∫0xf(x)dx
1.[a,b]n等分,每段长度为\frac{b-a}{n}\qquad\qquad\qquad\qquad\\
2.取右端点的高\rightarrow f(a+\frac{b-a}{n}i)\qquad\qquad\qquad\qquad\\
\color{teal}\therefore \lim_{n\to\infty}\sum_{i=1}^nf(a+\frac{b-a}{n}i)\frac{b-a}{n}=\int_a^bf(x)dx\qquad\qquad\\
\color{red}{[小结]}\qquad\qquad\\1.\lim_{x\to\infty}\sum_{i=1}^n=\lim_{x\to\infty}\sum_{i=0}^{n-1}(区别是前者取右端点,后者取左端点)\\
2.\lim_{x\to\infty}\sum_{i=1}^nf(a+\frac{b-a}{n}i)\frac{b-a}{n}=\int_a^bf(x)dx\qquad\qquad\qquad\\
3.\lim_{x\to\infty}\sum_{i=1}^nf(0+\frac{1-0}{n}i)\frac{1-0}{n}=\int_0^1f(x)dx\qquad\qquad\qquad\\
4.\lim_{x\to\infty}\sum_{i=1}^nf(0+\frac{x-0}{n}i)\frac{x-0}{n}=\int_0^xf(x)dx\qquad\qquad\qquad\\
1.[a,b]n等分,每段长度为nb−a2.取右端点的高→f(a+nb−ai)∴n→∞limi=1∑nf(a+nb−ai)nb−a=∫abf(x)dx[小结]1.x→∞limi=1∑n=x→∞limi=0∑n−1(区别是前者取右端点,后者取左端点)2.x→∞limi=1∑nf(a+nb−ai)nb−a=∫abf(x)dx3.x→∞limi=1∑nf(0+n1−0i)n1−0=∫01f(x)dx4.x→∞limi=1∑nf(0+nx−0i)nx−0=∫0xf(x)dx
例题
[例1]求limn→∞(1n+1+1n+2+…+1n+n)[分析]通式=limn→∞∑i=1n1n+i=limn→∞∑i=1n11+1n⋅1n=∫0111+xdx=ln2对比:limn→∞(nn2+1+nn2+2+…+nn2+n),其通式为limn→∞∑i=1nnn2+i=limn→∞∑i=1nn2n2+i⋅1n应该用夹逼法则,n2n2+n<∑i=1nnn2+i<n2n2+1[例2]求limn→∞(n+1n2+1+n+2n2+4+n+3n2+9+…+n+nn2+n2)[分析]通式=limn→∞∑i=1nn+in2+i2=limn→∞∑i=1nn2+nin2+i2⋅1n=limn→∞∑i=1n1+(in)1+(1n)2⋅1n=∫011+x1−xdx=4π+12ln2[例3]求limn→∞(1n2+n+1n2+2n+…+1n2+n2)[分析]通式=limn→∞∑i=1n1n2+in=limn→∞∑i=1n11+in⋅1n=∫0111+xdx=22−2[例4]已知f(x)=ax3,a>0且a̸=1,计算limn→∞1n4ln[f(1)f(2)…f(a)][分析]原式=limn→∞1n4ln(a13⋅a23⋅…⋅an3)=limn→∞1n4(13lna+23lna+…+n3lna)=lnalimn→∞∑i=1ni3n4=lnalimn→∞∑i=1n(in)3⋅1n=lna⋅∫01x3dx=14lna
\color{maroon}[例1]求\lim_{n\to\infty}(\frac{1}{n+1}+\frac{1}{n+2}+\ldots+\frac{1}{n+n})\\
\color{black}[分析]通式=\lim_{n\to\infty}\sum_{i=1}^n\frac{1}{n+i}=\lim_{n\to\infty}\sum_{i=1}^n\frac{1}{1+\frac{1}{n}}\cdot\frac1n=\int_0^1\frac{1}{1+x}dx=\ln{2}\\
\color{grey}对比:\lim_{n\to\infty}(\frac{n}{n^2+1}+\frac{n}{n^2+2}+\ldots+\frac{n}{n^2+n}),其通式为\lim_{n\to\infty}\sum_{i=1}^n\frac{n}{n^2+i}=\lim_{n\to\infty}\sum_{i=1}^n\frac{n^2}{n^2+i}\cdot\frac1n\\
\color{grey}应该用夹逼法则,\frac{n^2}{n^2+n}<\sum_{i=1}^n\frac{n}{n^2+i}<\frac{n^2}{n^2+1}\\
\color{maroon}[例2]求\lim_{n\to\infty}(\frac{n+1}{n^2+1}+\frac{n+2}{n^2+4}+\frac{n+3}{n^2+9}+\ldots+\frac{n+n}{n^2+n^2})\\
\color{black}[分析]通式=\lim_{n\to\infty}\sum_{i=1}^n\frac{n+i}{n^2+i^2}=\lim_{n\to\infty}\sum_{i=1}^n\frac{n^2+ni}{n^2+i^2}\cdot\frac1n=\lim_{n\to\infty}\sum_{i=1}^n\frac{1+(\frac in)}{1+(\frac1n)^2}\cdot\frac1n=\int_0^1\frac{1+x}{1-x}dx=\frac4\pi+\frac12\ln2\\
\color{maroon}[例3]求\lim_{n\to\infty}(\frac{1}{\sqrt{n^2+n}}+\frac{1}{\sqrt{n^2+2n}}+\ldots+\frac{1}{\sqrt{n^2+n^2}})\\
\color{black}[分析]通式=\lim_{n\to\infty}\sum_{i=1}^n\frac{1}{\sqrt{n^2+in}}=\lim_{n\to\infty}\sum_{i=1}^n\frac{1}{\sqrt{1+\frac in}}\cdot\frac1n=\int_0^1\frac{1}{\sqrt{1+x}}dx=2\sqrt2-2\\
\color{maroon}[例4]已知f(x)=a^{x^3},a>0且a\not=1,计算\lim_{n\to\infty}\frac{1}{n^4}\ln[f(1)f(2)\ldots f(a)]\\
\color{black}[分析]原式=\lim_{n\to\infty}\frac{1}{n^4}\ln(a^{1^3}\cdot a^{2^3}\cdot \ldots \cdot a^{n^3})=\lim_{n\to\infty}\frac{1}{n^4}(1^3\ln a+2^3\ln a+\ldots+n^3\ln a)\\=\ln a\lim_{n\to\infty}\sum_{i=1}^n\frac{i^3}{n^4}=\ln a\lim_{n\to\infty}\sum_{i=1}^n(\frac in)^3\cdot \frac1n=\ln a\cdot\int_0^1x^3dx=\frac14\ln a
[例1]求n→∞lim(n+11+n+21+…+n+n1)[分析]通式=n→∞limi=1∑nn+i1=n→∞limi=1∑n1+n11⋅n1=∫011+x1dx=ln2对比:n→∞lim(n2+1n+n2+2n+…+n2+nn),其通式为n→∞limi=1∑nn2+in=n→∞limi=1∑nn2+in2⋅n1应该用夹逼法则,n2+nn2<i=1∑nn2+in<n2+1n2[例2]求n→∞lim(n2+1n+1+n2+4n+2+n2+9n+3+…+n2+n2n+n)[分析]通式=n→∞limi=1∑nn2+i2n+i=n→∞limi=1∑nn2+i2n2+ni⋅n1=n→∞limi=1∑n1+(n1)21+(ni)⋅n1=∫011−x1+xdx=π4+21ln2[例3]求n→∞lim(n2+n1+n2+2n1+…+n2+n21)[分析]通式=n→∞limi=1∑nn2+in1=n→∞limi=1∑n1+ni1⋅n1=∫011+x1dx=22−2[例4]已知f(x)=ax3,a>0且a̸=1,计算n→∞limn41ln[f(1)f(2)…f(a)][分析]原式=n→∞limn41ln(a13⋅a23⋅…⋅an3)=n→∞limn41(13lna+23lna+…+n3lna)=lnan→∞limi=1∑nn4i3=lnan→∞limi=1∑n(ni)3⋅n1=lna⋅∫01x3dx=41lna
[小结]能直接凑出in的基本形{1.n+i (an+bi)2.n2+i23.n2+ni4.in
\color{red}[小结]\\
能直接凑出\frac in的基本形\begin{cases}1.n+i\ (an+bi)\\2.n^2+i^2\\3.n^2+ni\\4.\frac in
\end{cases}
[小结]能直接凑出ni的基本形⎩⎪⎪⎪⎨⎪⎪⎪⎧1.n+i (an+bi)2.n2+i23.n2+ni4.ni
[例5]求limn→∞(1n+1n+1n+1+1n+1n+4+1n+…+1n+(n−1)2+1n)[分析]记xn=∑i=0n−11n+i2+1n=∑i=0n−111+i2+1n2⋅1n∵i2<i2+1<(i+1)2∴∑i=0n−111+(i+1n)2⋅1n<xn<∑i=0n−111+(in)2⋅1n∵∑i=0n−111+(i+1n)2⋅1n=∑i=1n11+(in)2⋅1n∴两边放缩,得:∫0111+x2dx=4π[小结]放缩法(凑不出in){1.夹逼法则,如limn→∞nn2+1+nn2+2+…+nn2+n=12.放缩后再凑in,如上例
\color{maroon}[例5]求\lim_{n\to\infty}(\frac{1}{n+\frac1n}+\frac{1}{n+\frac{1+1}{n}}+\frac{1}{n+\frac{4+1}{n}}+\ldots+\frac{1}{n+\frac{(n-1)^2+1}{n}})\\
\color{black}[分析]记x_n=\sum_{i=0}^{n-1}\frac{1}{n+\frac{i^2+1}{n}}=\sum_{i=0}^{n-1}\frac{1}{1+\frac{i^2+1}{n^2}}\cdot\frac1n\\
\because i^2<i^2+1<(i+1)^2\\
\therefore \sum_{i=0}^{n-1}\frac{1}{1+(\frac{i+1}{n})^2}\cdot\frac1n<x_n<\sum_{i=0}^{n-1}\frac{1}{1+(\frac in)^2}\cdot\frac1n\\
\because \sum_{i=0}^{n-1}\frac{1}{1+(\frac{i+1}{n})^2}\cdot\frac1n=\sum_{i=1}^{n}\frac{1}{1+(\frac in)^2}\cdot\frac1n\\
\therefore 两边放缩,得:\int_0^1\frac{1}{1+x^2}dx=\frac4\pi\\
\color{red}[小结]\\
放缩法(凑不出\frac in)\begin{cases}1.夹逼法则,如\lim_{n\to\infty}\frac{n}{n^2+1}+\frac{n}{n^2+2}+\ldots+\frac{n}{n^2+n}=1\\2.放缩后再凑\frac in,如上例
\end{cases}
[例5]求n→∞lim(n+n11+n+n1+11+n+n4+11+…+n+n(n−1)2+11)[分析]记xn=i=0∑n−1n+ni2+11=i=0∑n−11+n2i2+11⋅n1∵i2<i2+1<(i+1)2∴i=0∑n−11+(ni+1)21⋅n1<xn<i=0∑n−11+(ni)21⋅n1∵i=0∑n−11+(ni+1)21⋅n1=i=1∑n1+(ni)21⋅n1∴两边放缩,得:∫011+x21dx=π4[小结]放缩法(凑不出ni){1.夹逼法则,如limn→∞n2+1n+n2+2n+…+n2+nn=12.放缩后再凑ni,如上例
[例6]求limn→∞(xn+x+xn+2x+…+xn+nx),x>0解:limn→∞∑i=1nxn+x⋅i=limn→∞∑i=1n11+x⋅in⋅xn=∫0x11+tdt=ln(1+x)[例7]求limn→∞(sinxn+sin2xn+…+sinx)xn,x>0解:limn→∞∑i=1nsinxin⋅xn=∫0xsintdt=1−cosx[小结]变量形:limx→∞∑i=1nf(0+x−0ni)x−0n=∫0xf(x)dx
\color{maroon}[例6]求\lim_{n\to\infty}(\frac{x}{n+x}+\frac{x}{n+2x}+\ldots+\frac{x}{n+nx}),x>0\\
\color{black}解:\lim_{n\to\infty}\sum_{i=1}^n\frac{x}{n+x\cdot i}=\lim_{n\to\infty}\sum_{i=1}^n\frac{1}{1+x\cdot \frac in}\cdot\frac xn=\int_0^x\frac{1}{1+t}dt=\ln(1+x)\\
\color{maroon}[例7]求\lim_{n\to\infty}(sin\frac xn+sin\frac{2x}{n}+\ldots+sinx)\frac xn,x>0\\
\color{black}解:\lim_{n\to\infty}\sum_{i=1}^nsin\frac{xi}{n}\cdot\frac xn=\int_0^xsintdt=1-cosx\\
\color{red}[小结]\\
变量形:\lim_{x\to\infty}\sum_{i=1}^nf(0+\frac{x-0}{n}i)\frac{x-0}{n}=\int_0^xf(x)dx[例6]求n→∞lim(n+xx+n+2xx+…+n+nxx),x>0解:n→∞limi=1∑nn+x⋅ix=n→∞limi=1∑n1+x⋅ni1⋅nx=∫0x1+t1dt=ln(1+x)[例7]求n→∞lim(sinnx+sinn2x+…+sinx)nx,x>0解:n→∞limi=1∑nsinnxi⋅nx=∫0xsintdt=1−cosx[小结]变量形:x→∞limi=1∑nf(0+nx−0i)nx−0=∫0xf(x)dx