mybatis缓存机制

本文详细介绍了Mybatis的一级缓存和二级缓存。一级缓存默认存在于SqlSession内部,减少重复查询;二级缓存则实现了SqlSession间的缓存共享,但因粒度较粗且在多表查询时可能导致脏数据,故在分布式环境下使用需谨慎。文章还讨论了二级缓存的配置、关闭以及适用场景,并提出Mybatis缓存可能带来的问题,建议在业务层采用其他缓存策略。

一级缓存

一级缓存介绍

在系统代码的运行中,我们可能会在一个数据库会话中,执行多次查询条件完全相同的Sql,鉴于日常应用的大部分场景都是读多写少,这重复的查询会带来一定的网络开销,同时select查询的量比较大的话,对数据库的性能是有比较大的影响的。

如果是Mysql数据库的话,在服务端和Jdbc端都开启预编译支持的话,可以在本地JVM端缓存Statement,可以在Mysql服务端直接执行Sql,省去编译Sql的步骤,但也无法避免和数据库之间的重复交互。关于Jdbc和Mysql预编译缓存的事情,可以看我的这篇博客JDBC和Mysql那些事

Mybatis提供了一级缓存的方案来优化在数据库会话间重复查询的问题。实现的方式是每一个SqlSession中都持有了自己的缓存,一种是SESSION级别,即在一个Mybatis会话中执行的所有语句,都会共享这一个缓存。一种是STATEMENT级别,可以理解为缓存只对当前执行的这一个statement有效。如果用一张图来代表一级查询的查询过程的话,可以用下图表示。


一级缓存配置

上文介绍了一级缓存的实现方式,解决了什么问题。在这个章节,我们学习如何使用Mybatis的一级缓存。只需要在Mybatis的配置文件中,添加如下语句,就可以使用一级缓存。共有两个选项,SESSION或者STATEMENT,默认是SESSION级别。

1
<setting name= "localCacheScope" value= "SESSION" />

二级缓存

二级缓存介绍

在上文中提到的一级缓存中,其最大的共享范围就是一个SqlSession内部,那么如何让多个SqlSession之间也可以共享缓存呢,答案是二级缓存。 当开启二级缓存后,会使用CachingExecutor装饰Executor,在进入后续执行前,先在CachingExecutor进行二级缓存的查询,具体的工作流程如下所示。

在二级缓存的使用中,一个namespace下的所有操作语句,都影响着同一个Cache,即二级缓存是被多个SqlSession共享着的,是一个全局的变量。 当开启缓存后,数据的查询执行的流程就是 二级缓存 -> 一级缓存 -> 数据库

二级缓存配置

要正确的使用二级缓存,需完成如下配置的。

1 在Mybatis的配置文件中开启二级缓存。

1
<setting name= "cacheEnabled" value= "true" />

2 在Mybatis的映射XML中配置cache或者 cache-ref 。

1
<cache/>

cache标签用于声明这个namespace使用二级缓存,并且可以自定义配置。

  • type: cache使用的类型,默认是PerpetualCache,这在一级缓存中提到过。
  • eviction: 定义回收的策略,常见的有FIFO,LRU。
  • flushInterval: 配置一定时间自动刷新缓存,单位是毫秒
  • size: 最多缓存对象的个数
  • readOnly: 是否只读,若配置可读写,则需要对应的实体类能够序列化。
  • blocking: 若缓存中找不到对应的key,是否会一直blocking,直到有对应的数据进入缓存。
1
<cache-ref namespace= "mapper.StudentMapper" />

cache-ref代表引用别的命名空间的Cache配置,两个命名空间的操作使用的是同一个Cache。

Mybatis的二级缓存不适应用于映射文件中存在多表查询的情况。一般来说,我们会为每一个单表创建一个单独的映射文件,如果存在涉及多个表的查询的话,由于Mybatis的二级缓存是基于namespace的,多表查询语句所在的namspace无法感应到其他namespace中的语句对多表查询中涉及的表进行了修改,引发脏数据问题

为了解决这个问题,可以使用 cache-ref ,使关联表的映射文件对应的sql操作都使用同一块缓存。

后果:这样,缓存的粒度变粗了,多个Mapper namespace下的所有操作都会对缓存使用造成影响,其实这个缓存存在的意义已经不大了。

二级缓存关闭

对于变化频率较高的sql,需要禁用二级缓存:(因为变得我们记住它没得意思)

在statement中设置useCache=false可以禁用当前select语句的二级缓存,即每次查询都会发出sql去查询,默认情况是true,即该sql使用二级缓存。

<select id="findOrderListResultMap" resultMap="ordersUserMap" useCache="false">

如果你关闭之后去测试没有下面一行:

[html]  view plain  copy
  1. Cache Hit Ratio [com.ycy.mybatis.dao.UserMapper]: 0.0  
刷新二级缓存

如果sqlsession操作commit操作,对二级缓存进行刷新(全局清空)。

设置statementflushCache是否刷新缓存,默认值是true

[html]  view plain  copy
  1. <!--新增用户-->  
  2.    <insert id="insertUser" parameterType="User" flushCache="true">  
  3.        <!--插入值之后返回主键值-->  
  4.        <selectKey resultType="int" order="AFTER" keyProperty="id">  
  5.            SELECT LAST_INSERT_ID()  
  6.        </selectKey>  
  7.        INSERT  INTO USER  (username,birthday,sex,address) VALUES (#{username},#{birthday},#{sex},#{address})  
  8.    </insert>  

你刷新之后,缓存依旧为0.0:

[html]  view plain  copy
  1. Cache Hit Ratio [com.ycy.mybatis.dao.UserMapper]: 0.0  

flushInterval:(刷新间隔)可以被设置为任意的正整数,而且它们代表一个合理的毫秒形式的时间段。默认情况是不设置,也就是没有刷新间隔,缓存仅仅调用语句时刷新。

size(引用数目)可以被设置为任意正整数,要记住你缓存的对象数目和你运行环境的可用内存资源数目。默认值是1024

readOnly(只读)属性可以被设置为truefalse。只读的缓存会给所有调用者返回缓存对象的相同实例。因此这些对象不能被修改。这提供了很重要的性能优势。可读写的缓存会返回缓存对象的拷贝(通过序列化)。这会慢一些,但是安全,因此默认是false

 

如下例子:

<cache  eviction="FIFO"  flushInterval="60000"  size="512"  readOnly="true"/>

这个更高级的配置创建了一个 FIFO 缓存,并每隔 60 秒刷新,存数结果对象或列表的 512 个引用,而且返回的对象被认为是只读的,因此在不同线程中的调用者之间修改它们会导致冲突。可用的收回策略有默认的是 LRU:

1. LRU  最近最少使用的:移除最长时间不被使用的对象。

2. FIFO  先进先出:按对象进入缓存的顺序来移除它们。

3. SOFT  软引用:移除基于垃圾回收器状态和软引用规则的对象。

4. WEAK  弱引用:更积极地移除基于垃圾收集器状态和弱引用规则的对象。



总结

  1. Mybatis的二级缓存相对于一级缓存来说,实现了SqlSession之间缓存数据的共享,同时粒度更加的细,能够到Mapper级别,通过Cache接口实现类不同的组合,对Cache的可控性也更强。
  2. Mybatis在多表查询时,极大可能会出现脏数据,有设计上的缺陷,安全使用的条件比较苛刻。
  3. 在分布式环境下,由于默认的Mybatis Cache实现都是基于本地的,分布式环境下必然会出现读取到脏数据,需要使用集中式缓存将Mybatis的Cache接口实现,有一定的开发成本,不如直接用Redis,Memcache实现业务上的缓存就好了。

全文总结

本文介绍了Mybatis的基础概念,Mybatis一二级缓存的使用及源码分析,并对于一二级缓存进行了一定程度上的总结。 最终的结论是Mybatis的缓存机制设计的不是很完善,在使用上容易引起脏数据问题,个人建议不要使用Mybatis缓存,在业务层面上使用其他机制实现需要的缓存功能,让Mybatis老老实实做它的ORM框架就好了哈哈。

引用链接:http://www.importnew.com/25836.html
【Koopman】遍历论、动态模态分解和库普曼算子谱特性的计算研究(Matlab代码实现)内容概要:本文围绕【Koopman】遍历论、动态模态分解和库普曼算子谱特性的计算研究展开,重点介绍基于Matlab的代码实现方法。文章系统阐述了遍历理论的基本概念、动态模态分解(DMD)的数学原理及其与库普曼算子谱特性之间的内在联系,展示了如何通过数值计算手段分析非线性动力系统的演化行为。文中提供了完整的Matlab代码示例,涵盖数据驱动的模态分解、谱分析及可视化过程,帮助读者理解并复现相关算法。同时,文档还列举了多个相关的科研方向和技术应用场景,体现出该方法在复杂系统建模与分析中的广泛适用性。; 适合人群:具备一定动力系统、线性代数与数值分析基础,熟悉Matlab编程,从事控制理论、流体力学、信号处理或数据驱动建模等领域研究的研究生、博士生及科研人员。; 使用场景及目标:①深入理解库普曼算子理论及其在非线性系统分析中的应用;②掌握动态模态分解(DMD)算法的实现与优化;③应用于流体动力学、气候建模、生物系统、电力系统等领域的时空模态提取与预测;④支撑高水平论文复现与科研项目开发。; 阅读建议:建议读者结合Matlab代码逐段调试运行,对照理论推导加深理解;推荐参考文中提及的相关研究方向拓展应用场景;鼓励在实际数据上验证算法性能,并尝试改进与扩展算法功能。
本系统采用微信小程序作为前端交互界面,结合Spring Boot与Vue.js框架实现后端服务及管理后台的构建,形成一套完整的电子商务解决方案。该系统架构支持单一商户独立运营,亦兼容多商户入驻的平台模式,具备高度的灵活性与扩展性。 在技术实现上,后端以Java语言为核心,依托Spring Boot框架提供稳定的业务逻辑处理与数据接口服务;管理后台采用Vue.js进行开发,实现了直观高效的操作界面;前端微信小程序则为用户提供了便捷的移动端购物体验。整套系统各模块间紧密协作,功能链路完整闭环,已通过严格测试与优化,符合商业应用的标准要求。 系统设计注重业务场景的全面覆盖,不仅包含商品展示、交易流程、订单处理等核心电商功能,还集成了会员管理、营销工具、数据统计等辅助模块,能够满足不同规模商户的日常运营需求。其多店铺支持机制允许平台方对入驻商户进行统一管理,同时保障各店铺在品牌展示、商品销售及客户服务方面的独立运作空间。 该解决方案强调代码结构的规范性与可维护性,遵循企业级开发标准,确保了系统的长期稳定运行与后续功能迭代的可行性。整体而言,这是一套技术选型成熟、架构清晰、功能完备且可直接投入商用的电商平台系统。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值