简单易学的分离式部署小米智能家居Miloco方法

该文章已生成可运行项目,

一、安装环境

  • Windows用户:安装WSL2以及Docker
  • macOS/Linux用户:安装Docker
    此处不再赘述,网上随便找个教程即可。特别地,对于Windows用户来说,你需要将 WSL2 的网络模式设置为 Mirrored。

二、使用Docker部署Miloco后端

以下均为bash命令。请Windows用户进入WSL2 / Linux、macOS用户进入终端操作:

mkdir miloco
cd milico
vi docker-compose.yml

以下是compose的内容(不会使用vi的同学可以傻瓜式操作:先按i,再使用粘贴功能,然后按冒号,输入wq然后回车,记得关闭输入法):

services:
  backend:
    container_name: miloco-backend
    image: ghcr.nju.edu.cn/xiaomi/miloco-backend:latest
    network_mode: host
    expose:
      - ${BACKEND_PORT:-8000}
    environment:
      - BACKEND_HOST=${BACKEND_HOST:-0.0.0.0}
      - BACKEND_PORT=${BACKEND_PORT:-8000}
      - AI_ENGINE_HOST=${AI_ENGINE_HOST:-0.0.0.0}
      - AI_ENGINE_PORT=${AI_ENGINE_PORT:-8001}
      - BACKEND_LOG_LEVEL=${BACKEND_LOG_LEVEL:-info}
      - TZ=${TZ:-Asia/Shanghai}
    volumes:
      - ./data:/app/miloco_server/.temp
      - ./log/backend:/app/miloco_server/.temp/log
    restart: unless-stopped
    healthcheck:
      disable: true

再写个.env

vi .env

以下是.env的内容:

TZ=Asia/Shanghai
BACKEND_HOST=0.0.0.0
BACKEND_PORT=8000
BACKEND_LOG_LEVER=info
AI_ENGINE_HOST=0.0.0.0
AI_ENGINE_PORT=8001
AI_ENGINE_LOG_LEVER=info

继续执行命令:

mkdir -p data
mkdir -p log/backend
docker compose up -d

静待下载镜像以及运行即可。

三、部署视觉大模型

对于小白用户(含非专业的AMD用户),此处建议使用LM StudioOllama来部署GGUF版的VL模型。
如果你有一张高性能NVIDIA显卡(RTX3090、RTX4090、RTX5090等显存>=24G的),想要更加专业稳定的服务,那么建议使用vLLMSGLang进行生产级服务部署。
此处为了照顾Windows及macOS小白用户,以简单易用的LM Studio举例。

下载LM Studio并安装

https://lmstudio.ai/

设置及下载模型

点击界面最右下角的设置图标,

  • App Settings-General-Language-简体中文
  • App Settings-Developer-启用本地 LLM 服务

检查环境安装情况

还是在设置页-Runtime

NVIDIA用户
  • Vulkan llama.cpp
  • CUDA llama.cpp
  • CPU llama.cpp
  • CUDA 12 llama.cpp
  • Harmony
AMD用户
  • Vulkan llama.cpp
  • ROCm llama.cpp
  • CPU llama.cpp
  • Harmony
苹果用户
  • Vulkan llama.cpp
  • Metal llama.cpp
  • MLX llama.cpp
  • CPU llama.cpp
  • Harmony

下载模型

Model Search-搜索框中输入:xiaomi-open-source/Xiaomi-MiMo-VL-Miloco-7B-GGUF
点击右下角Download即可

运行模型并提供API服务

  • 下载完成后点击页面左侧的“开发者”(一个绿色终端图标,位于对话图标下方)
  • 点击页面顶部加载模型
  • 你应该能够看到xiaomi-mimo-vl-miloco-7bREADY状态。
  • 页面顶部有一个Status: Stopped,点击开关,切换到Running
  • 点击Server Settings,打开“在网络中提供服务”。
  • 你将得到一个局域网地址,显示在右侧的Reachable at中,如:http://192.168.50.210:1234。复制它。

四、与Miloco对接

假设你的Docker宿主机IP为192.168.50.123,那么就访问https://192.168.50.123:8000/。首次设置会让你登录账号,登录后有一个callback地址,也填写192.168.50.123:8000

对接VL模型

点击模型管理-云端模型-添加模型:
Base URL输入http://192.168.50.210:1234/v1
API Key随便填
模型ID填xiaomi-mimo-vl-miloco-7b,再点击一下以添加。
完成后在上方“视觉理解大模型”中选择云端:xiaomi-mimo-vl-miloco-7b

对接规划模型

对于许多用户来说,走到这一步的时候,想必你的显存/统一内存已经所剩无几了吧!让我们白嫖一下硅基流动的大模型。

  • 访问https://cloud.siliconflow.cn/,注册并登录。
  • 点击左侧的API密钥,生成一个,复制出来(sk开头的)
  • 还是添加云端模型:
    Base URL输入https://api.siliconflow.cn/v1
    API Key填刚才生成的
    模型ID选Qwen/Qwen3-8B
    完成后在上方“规划大模型”中选择云端:Qwen/Qwen3-8B

回到AI中心,开始你的Miloco之旅吧!

五、一点Tips

  • 对于规划模型,你可以尝试使用更强的大模型,它们调用工具更稳定,比如Kimi K2Minimax M2等。Qwen3-8B的训练时间较早且对齐略有问题,可能不能很好地稳定调用工具。这只是一个便宜的入门之选。
  • 对于VL模型,有条件的同学可以尝试部署全精度版本,使用vLLM提供服务,会获得更棒的体验。
  • 官方文档中推荐的安装方式只是多集成了一个AI Engine,本质上就是对llama.cpp的封装。分离式部署大模型服务更灵活。
  • 吐槽:我曾经想着提个pr来适配更多平台,但发现代码里硬编码了许多CUDA/nvidia相关的东西,蒜鸟蒜鸟。
  • 有疑问可以联系我:flymyd@foxmail.com,不保证时效性。
本文章已经生成可运行项目
评论 3
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值