Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get
and set
.
get(key)
- Get the value (will always be positive) of the key if the key exists in the cache,
otherwise return -1.
set(key, value)
- Set or insert the value if the key is not already present. When the
cache reached its capacity, it should invalidate the least recently used item before inserting a new item.
LRU缓存算法实现,这个算法就是在缓存已满时,将最久未使用的元素移出缓存。
经典实现就是双向链表加哈希,每次使用(get or set)都使用哈希值找到这个元素在双链表中的位置,然后将它移到最前面,如果缓存已满就删除队尾的元素。哈希中放的是元素的地址,在新增、移动和删除元素的时候都要在Hash表中作对应修改,而双向链表主要是为了方便删除。
class Node{
public:
int key, val;
Node *pre, *next;
Node(int k, int v): key(k), val(v), pre(NULL), next(NULL) {}
};
class LRUCache{
map<int, Node*> mp;
map<int, Node*>::iterator iter;
int used, cap;
Node *head, *tail;
public:
LRUCache(int capacity) {
mp.clear();
used = 0, cap = capacity;
head = new Node(0, 0);
tail = new Node(0, 0);
head->next = tail, tail->pre = head;
}
~LRUCache(){
for (Node *n = head, *nnext; n; n = nnext) {
nnext = n->next;
delete n;
}
}
int get(int key) {
if ((iter = mp.find(key)) != mp.end()) {
movetoFirst(iter->second);
return iter->second->val;
}else
return -1;
}
void set(int key, int value) {
if ((iter = mp.find(key)) != mp.end()) {
iter->second->val = value;
movetoFirst(iter->second);
} else {
Node *node;
if (used == cap) {
mp.erase(tail->pre->key);
node = tail->pre;
node->key = key, node->val = value;
} else {
node = new Node(key, value);
used++;
}
mp[node->key] = node;
movetoFirst(node);
}
}
void movetoFirst(Node *node) {
if (node->pre && node->next) {
node->pre->next = node->next;
node->next->pre = node->pre;
}
node->pre = head, node->next = head->next;
head->next->pre = node, head->next = node;
}
};