Description
Given a positive integer N, you should output the most right digit of N^N.
Input
The input contains several test cases. The first line of the input is a single integer T which is the number of test cases. T test cases follow.
Each test case contains a single positive integer N(1<=N<=1,000,000,000).
Each test case contains a single positive integer N(1<=N<=1,000,000,000).
Output
For each test case, you should output the rightmost digit of N^N.
Sample Input
2 3 4
Sample Output
7 6
Hint
In the first case, 3 * 3 * 3 = 27, so the rightmost digit is 7.
In the second case, 4 * 4 * 4 * 4 = 256, so the rightmost digit is 6.
方法一:
通过幂取模的方式,和上一个题的第二种方法一样,都可以解出来:
#include <stdio.h>
int pow_mod(long long a,long long n,int m)
{
long long res = 1;
while(n)
{
if(n&1)
res = res*a%m;
a = a*a%m;
n >>= 1;
}
return (int)res;
}
int main()
{
int t,n,i;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
printf("%d\n",pow_mod(n,n,10));
}
return 0;
}
方法二:
通过找到20这个周期,对20取余数即可:
include <stdio.h>
int f[25] = {0,1,4,7,6,5,6,3,6,9,0,1,6,3,6,5,6,7,4,9,0};
int main()
{
int t;
int n;
scanf("%d",&t);
while(t--)
{
int sum=1;
scanf("%d",&n);
/*for(int i=1;i<=n;i++)
{
sum*=n;
}
printf("%d\n",sum%10);*/
printf("%d\n",f[n%20]);
//printf("%d\n",sum);
}
return 0;
}