52nlp:理解EM算法

本文介绍了EM(期望最大化)算法的基本原理及其在自然语言处理中的应用。EM算法通过E-step和M-step迭代求解含有隐变量的概率模型的最大似然估计。文章详细解释了EM算法的推导过程,并对比了其与直接最大化对数似然函数的区别。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

声明:此文转载自“我爱自然语言处理”,请注意版权,谢谢。

EM(Expectation-Maximization)算法在机器学习和自然语言处理应用非常广泛,典型的像是聚类算法K-means和高斯混 合模型以及HMM(Hidden Markov Model)。笔者觉得讲EM算法最好的就是斯坦福大学Andrew Ng机器学习课的讲课笔记和视频。本文总结性的给出普遍的EM算法的推导和证明,希望能够帮助接触过EM算法但对它不是很明白的人更好地理解这一算法。

EM算法的目标是找出有隐性变量的概率模型的最大可能性解,它分为两个过程E-step和M-step,E-step通过最初假设或上一步得出的模型参数得到后验概率,M-step重新算出模型的参数,重复这个过程直到目标函数值收敛。我们设观察到的变量所组成的向量为[image],所有的隐性变量所组成的向量为[image],模型的参数为[image](一个或多个参数)。在聚类的情况下,[image]是潜在的类,而[image]就是需要分类的数据。我们的目标就是找出模型的参数[image]使得[image]出现的可能性最大,也就是使下面的对数可能性最大化:

[image]

注:这里仿照Andrew Ng 的用法使用[image]而不是[image],因为[image]是模型的参数而不是随机变量。关于为什么要用EM算法而不是不直接通过[image]得出[image],是因为这样可能会出现严重的overfitting (这里不详细说明,请参看Pattern Recognition and Machine Learning一书9.2.1节)。

假设[image][image]上一个概率分布,所以[image]

[image]

最后一步是根据Jensen不等式[image]如果[image]是凹函数,在这个式子中就是对数函数。[image]就是[image][image]就是[image]。 当[image]是严格的 凹函数的时候,[image]中等号成立的条件是[image]是常数,也就是说在这个特定的式子中[image],满足这个条件加上之前的[image][image]其实就是后验概率[image](参看http://www.stanford.edu/class/cs229/materials.html Lecture notes: The EM Algorithm)。这就是EM算法中E-step的由来。

M-step一般来说就是个就是二次规划的问题,通过[image]得出[image]。这里也就不再赘述。

EM算法其实就是coordinate ascent, E-step是将[image]视为常数,选择一个概率分布[image]使得目标函数[image]最大化, M-step就是保持[image]不变,选择[image]使得目标函数[image]最大化,因为每一步的目标函数都比前一步的值大,所以只要目标函数存在最大值,EM算法就会收敛。这个过程用图像表示就是:

E-step找到跟[image](黑色弧线)交于[image][image](蓝色弧线),M-step得到[image]取最大值时的[image],这样下去直到收敛。(此图源于Andrew)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值