神经网络中的激活函数

本文探讨了在神经网络中使用非线性激活函数的重要性,包括阶跃函数、Sigmoid函数和ReLU函数,并通过Python代码展示了这些函数的图形表现。

为了发挥叠加层所带来的优势,激活函数必须使用非线性函数

阶跃函数

import numpy as np
import matplotlib.pyplot as plt
def step_function(x):
    return np.array(x > 0, dtype=int)

x = np.arange(-5.0, 5.0, 0.1)
y = step_function(x)
plt.plot(x, y)
plt.ylim(-0.1, 1.1)
plt.show()

在这里插入图片描述

Sigmoid函数

def sigmoid(x):
    return 1 / (1 + np.exp(-x))

x = np.arange(-5.0, 5.0, 0.1)
y = sigmoid(x)
plt.plot(x, y)
plt.ylim(-0.1, 1.1)
plt.show()

在这里插入图片描述

ReLu函数

def ReLU(x):
    return np.maximum(0, x)

x = np.arange(-1.0, 1.0, 0.1)
y = ReLU(x)
plt.plot(x, y)
plt.ylim(-0.1, 1.1)
plt.show()

在这里插入图片描述

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

量子象限

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值