elastic search是一个分布式的搜索引擎,支持对数亿的数据进行秒级的查询操作。其底层使用了lucene来进行存储,对lucene进行了分布式的封装,同时在数据进入时进行了translog以实现fail over。
在将elastic search时当做数据库使用时,必然会遇到join操作。
这里提供spark sql来实现join的一种思路。
spark是一个通用的分布式处理框架,包括但不限于数据的读、写、流式计算等操作。使用spark,可以将自己的业务逻辑,由spark框架分布在多台机器上来执行。
elastic search在2.1+的版本上,对spark提供了支持。
下面提供一些读写的例子,绝大部分内容取自于参考资料中的官方文档。
需要注意的是,spark是使用scala语言来开发的,而elasticsearch是使用java语言来开发的。本文中的例子是使用java语言来调用spark的库,官方有更简捷的使用spark语言的例子。
1. 使用spark来读写elasticsearch
import java.util.Map;
import java.util.Map.Entry;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.elasticsearch.spark.rdd.api.java.JavaEsSpark;
import com.google.common.collect.ImmutableList;
import com.google.common.collect.ImmutableMap;
public class WriteToEs {
public static void main(String[] args) {
SparkConf conf = new SparkConf().setAppName("Test").setMaster("local");
conf.set("es.index.auto.create", "true");
JavaSparkContext jsc = new JavaSparkContext(conf);
// 写入es
{
Map<String, ?> numbers = ImmutableMap.of("one", 1, "two", 2);
Map<String, ?> airports = ImmutableMap.of("OTP", "Otopeni", "SFO",
"San Fran");
JavaRDD<Map<String, ?>> javaRDD = jsc.parallelize(ImmutableList.of(
numbers, airports));
JavaEsSpark.saveToEs(javaRDD, "spark/docs");
}
// 从es中读取
{
JavaPairRDD<String, Map<String, Object>> esRDD = JavaEsSpark.esRDD(
jsc, "spark/docs");
for (Entry<String, Map<String, Object>> entry : esRDD
.collectAsMap().entrySet()) {
System.out.println(entry.getKey());
System.out.println(entry.getValue());
}
}
// 从es中读取
{
JavaRDD<Map<String, Object>> esRDD = JavaEsSpark.esRDD(jsc,
"spark/docs", "?q=one:1").values();
// JavaRDD<Map<String, Object>> esRDD = JavaEsSpark.esRDD(jsc,
// "spark/docs").values();
Function<Map<String, Object>, Boolean> filter = new Function<Map<String, Object>, Boolean>() {
public Boolean call(Map<String, Object> map) throws Exception {
return map.containsKey("one");
}
};
JavaRDD<Map<String, Object>> filtered = esRDD.filter(filter);
for (Map<String, Object> map : filtered.collect()) {
System.out.println(map);
}
}
jsc.close();
}
}
2. 使用spark sql来读写elasticsearch
此例子为了演示join而写,没有实际的意义。
import java.io.Serializable;
import java.util.ArrayList;
import java.util.List;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SQLContext;
import org.elasticsearch.spark.sql.api.java.JavaEsSparkSQL;
public class SparkSql implements Serializable {
private static final long serialVersionUID = -8843264837345502547L;
public static class People {
private int id;
private String name;
private String surname;
private int age;
public People(int id, String name, String surname, int age) {
this.id = id;
this.name = name;
this.surname = surname;
this.age = age;
}
public People() {
}
public int getId() {
return id;
}
public void setId(int id) {
this.id = id;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public String getSurname() {
return surname;
}
public void setSurname(String surname) {
this.surname = surname;
}
public int getAge() {
return age;
}
public void setAge(int age) {
this.age = age;
}
}
public static void main(String[] args) {
SparkConf conf = new SparkConf().setAppName("Test").setMaster("local");
conf.set("es.index.auto.create", "true");
JavaSparkContext jsc = new JavaSparkContext(conf);
// 写入
{
SQLContext sc = new SQLContext(jsc);
List<People> data = new ArrayList<People>();
data.add(new People(1, "Micheal", "Mike", 18));
data.add(new People(2, "Flowaters", "fw", 18));
DataFrame people = sc.createDataFrame(data, People.class);
JavaEsSparkSQL.saveToEs(people, "spark/person");
}
// 读取
{
SQLContext sql = new SQLContext(jsc);
// 注册表people
DataFrame people = sql.read().format("es").load("spark/people");
people.registerTempTable("people");
// 注册表person
DataFrame person = sql.read().format("es").load("spark/person");
person.registerTempTable("person");
// 查看表的schema
// df.printSchema();
// 执行sql
DataFrame df = sql
.sql("SELECT ps.id, p.name FROM people as p INNER JOIN person as ps ON p.name = ps.name");
// 输出执行的结果
for (Row row : df.collectAsList()) {
System.out.println(row.toString());
}
}
jsc.close();
}
}
参考资料:
1. elasticsearch官方网站:https://www.elastic.co/
2. elasticsearch官方对spark的支持:https://www.elastic.co/guide/en/elasticsearch/hadoop/current/spark.html