LA4850 - Installations

本文探讨了电信服务工程师的任务调度问题,通过定义任务的完成时间和截止期限之间的惩罚值来衡量任务超时的程度,并提出了一种算法来最小化两个最大惩罚值之和。
In the morning, service engineers in a telecom company receive a list of jobs which they must serve today. They install telephones, internet, ipTVs, etc and repair troubles with established facilities. A client requires a deadline when the requested job must be completed. But the engineers may not complete some jobs within their deadlines because of job overload. For each job, we consider, as a penalty of the engineer, the difference between the deadline and the completion time. It measures how long the job proceeds after its deadline. The problem is to find a schedule minimizing the sum of the penalties of the jobs with the two largest penalties.

A service engineer gets a list of jobs Ji with a serving time si and a deadline di. A job Ji needs time si, and if it is completed at time Ci, then the penalty of Ji is defined to be max{0, Ci - di}. For convenience, we assume that the time t when a job can be served is 0$ \le$t < $ \infty$ and si and di are given positive integers such that 0 < si$ \le$di. The goal is to find a schedule of jobs minimizing the sum of the penalties of the jobs with the two largest penalties.

For example, there are six jobs Ji with the pair (si, di) of the serving time si and the deadline di, i = 1,..., 6, where (s1, d1) = (1, 7), (s2, d2) = (4, 7), (s3, d3) = (2, 4), (s4, d4) = (2, 15), (s5, d5) = (3, 5), (s6, d6) = (3, 8). Then Figure 1 represents a schedule which minimizes the sum of the penalties of the jobs with the two largest penalties. The sum of the two largest penalties of an optimal schedule is that of the penalties of J2 and J6, namely 6 and 1, respectively, which is equal to 7 in this example.

\epsfbox{p4850.eps}

Figure 1. The optimal schedule of the example

Input 

Your program is to read from standard input. The input consists of T test cases. The number of test cases T is given on the first line of the input. The first line of each test case contains an integer n ( 1$ \le$n$ \le$500), the number of the given jobs. In the next n lines of each test case, the i-th line contains two integer numbers si and di, representing the serving time and the deadline of the job Ji, respectively, where 1$ \le$si$ \le$di$ \le$10, 000.

Output 

Your program is to write to standard output. Print exactly one line for each test case. The line contains the sum of the penalties of the jobs with the two largest penalties.

The following shows sample input and ouput for three test cases.

Sample Input 

3
6
1 7
4 7
2 4
2 15
3 5
3 8
7
2 17
2 11
3 4
3 20
1 20
4 7
5 14
10
2 5
2 9
5 10
3 11
3 4
4 21
1 7
2 9
2 11
2 23

Sample Output 

7
0

14

只想到最大惩罚值用贪心,不知道两个怎么搞,也是看了别人的题解,分析问题的思维好欠缺啊。
首先还是贪心,然后分三种情况讨论分析
1.所有惩罚值为0.答案就是0
2.有一个有惩罚值,答案就是该惩罚值。
3有两个以上的惩罚值,我们假设最大为max1,次大为max2,就会有两个下标为xb1,xb2.
会把任务划分成三段


我们试着移动任务:
(1)从1找一个任务移动到2执行,则xb2所对应的惩罚值不变,xb1所对应的惩罚值增加。
(2)从2找一个任务移动到3执行,则xb1所对应的惩罚值不变,xb2所对应的惩罚值增加。
(3)从1找一个任务移动到3执行,虽然最大惩罚值会增大,但是则xb2所对应的惩罚值和xb1所对应的惩罚值减小。也就说最大惩罚值增大,次大惩罚值有可能减小。总和也就有可能减小。分析可以发现,最好也就是移动任务到xb2后面第一个。
所以我们只要枚举(3)情况就可以了。

#include <iostream>
#include <stdio.h>
#include <cstring>
#include <algorithm>
#include <queue>
#include <map>
#include <cmath>
using namespace std;
typedef long long ll;
const int MAXN = 510;
int n;
struct node
{
    int s, d;
}g[MAXN];
bool cmp(node a, node b)
{
    return a.d<b.d;
}
int work()
{
    int ans;
    sort(g,g+n,cmp);
    int i, j, xb1=-1, xb2=-1, sum = 0, max1=0, max2=0;
    /*for(i=0; i<n; i++)
    {
        printf("%d %d\n",g[i].s,g[i].d);
    }*/
    for(i=0; i<n; i++)
    {
        sum += g[i].s;
        int temp = max(sum - g[i].d,0);
        if(temp>max1)
        {
            max2 = max1;
            max1 = temp;
            xb1 = xb2; xb2 = i;
        }else if(temp>max2)
        {
            max2 = temp;
            xb1 = xb2; xb2 = i;
        }
    }
    ans = max1 + max2;
    for(i=0; i<=xb1; i++) // 枚举移动的工作
    {
        //每次都要初始化
        sum = max1 = max2 = 0;
        for(j=0; j<n; j++)
        {
            if(j==i)continue;//跳过所选的工作
            sum += g[j].s;
            int temp = max(sum - g[j].d,0);
            if(temp>max1)
            {
                max2 = max1;
                max1 = temp;

            }else if(temp>max2)
            {
                max2 = temp;
            }
            if(j==xb2) //把移动的工作放入xb2后面
            {
                sum += g[i].s;
                int temp = max(sum - g[i].d,0);
                if(temp>max1)
                {
                    max2 = max1;
                    max1 = temp;

                }else if(temp>max2)
                {
                    max2 = temp;
                }
            }
        }
        //cout<<i<<" "<<max1+max2<<endl;
        ans = min(ans, max1 + max2); //选择最优解
    }
    return ans;
}
int main()
{
    int t;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d",&n);
        for(int i=0; i<n; i++)
        {
            scanf("%d%d",&g[i].s,&g[i].d);
        }
        printf("%d\n",work());
    }
    return 0;
}


Nano-ESG数据资源库的构建基于2023年初至2024年秋季期间采集的逾84万条新闻文本,从中系统提炼出企业环境、社会及治理维度的信息。其构建流程首先依据特定术语在德语与英语新闻平台上检索,初步锁定与德国DAX 40成分股企业相关联的报道。随后借助嵌入技术对文本段落执行去重操作,以降低内容冗余。继而采用GLiNER这一跨语言零样本实体识别系统,排除与目标企业无关的文档。在此基础上,通过GPT-3.5与GPT-4o等大规模语言模型对文本进行双重筛选:一方面判定其与ESG议题的相关性,另一方面生成简明的内容概要。最终环节由GPT-4o模型完成,它对每篇文献进行ESG情感倾向(正面、中性或负面)的判定,并标注所涉及的ESG具体维度,从而形成具备时序特征的ESG情感与维度标注数据集。 该数据集适用于多类企业可持续性研究,例如ESG情感趋势分析、ESG维度细分类别研究,以及企业可持续性事件的时序演变追踪。研究者可利用数据集内提供的新闻摘要、情感标签与维度分类,深入考察企业在不同时期的环境、社会及治理表现。此外,借助Bertopic等主题建模方法,能够从数据中识别出与企业相关的核心ESG议题,并观察这些议题随时间的演进轨迹。该资源以其开放获取特性与连续的时间覆盖,为探究企业可持续性表现的动态变化提供了系统化的数据基础。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值