机器学习知识点(五)梯度下降法Java实现

梯度下降法,就是利用负梯度方向来决定每次迭代的新的搜索方向,使得每次迭代(步长)能使待优化的目标函数逐步减小。梯度下降法是2范数下的最速下降法,用来求解函数的最小值,无约束优化。

看数学定义都晦涩,网上发现一个比较通俗的说法:想象你站在一座高山上,你想要用最短的时间下山,但是你每次只能走一步。那你需要做的就是查看你周围360度的范围,找到一个最陡峭的(下降的最快的)方向,然后转移到那个点上;转移到新的位置之后,重复相应的步骤,环顾360度,找到最陡峭的(下降的最快的)方向,然后转移过去,这样每次都是选择最陡峭的方向走,那么很快就能到达山下了。

一个多元函数的梯度方向是该函数值增大最陡的方向,在一元函数中,梯度方向是沿着切线方向;而在多元函数中,梯度向量是函数值f对每个变量的导数,向量的方向就是梯度方向。

梯度下降法的计算过程就是沿梯度下降的方向求解极小值,其迭代公式为:

  

梯度方向通过对函数求导得到,步长的确定是由线性搜索算法来确定,即把下一个点的坐标作为ak+1的函数,然后求满足f(ak+1)的最小值的即可。

一般情况下,梯度向量为0的明是到了一个极值点,此时梯度的幅值也为0。采用梯度下降算法进行最优化求解时,算法迭代的终止条件是梯度向量的幅值接近0即可,可以设置个非常小的常数阈值。

总结来说,梯度下降法就是在没有约束的情况下求解函数的最小值,通过对函数求导沿着最陡梯度下降,直到梯度向量的增值接近0为止。这里面有两个关键参数要定义,一个是迭代步长;另一个是终止迭代的误差值设置。

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值