十二、图的算法入门--(3)最小生成树---Kruskal算法实现

摘自计蒜客:http://www.jisuanke.com/course/35/7553


最小生成树的另一种算法——Kruskal 算法。

首先我们定义带权图 G 的边集合为 E,接着我们再定义最小生成树的边集合为 T,初始集合 T 都为空。

接着执行以下操作:

首先,我们把图 G 看成一个有 n 棵树的森林,图上每个顶点对应一棵树。
接着,我们将边集合 E 的每条边,按权值从小到大进行排序,依次遍历每条边 e=(u,v),我们记顶点 u 所在的树为 Tu, 顶点 v 所在的树为 Tv,如果 Tu 和 Tv不是同一棵树,则我们将边 e 加入集合 T,并将两棵树 Tu 和 Tv进行合并。
算法执行完毕后,集合 T 记录了最小生成树的所有边。

下面有一个例子模拟下kruskal算法:


通过模拟,最终我们可以得到该图对应的最小生成树,如下图所示:


从图中我们可以算出最小权值和为:19+42+31+19=121

仔细分析算法,我们可以发现,Kruskal 算法也是采用了贪心的策略,每次都会选择一条两个顶点不在同一棵树且权值最小的边加入集合。Kruskal 算法的时间复杂度为 O(ElogE),E 为图 G 的总边数,所以 Kruskal 算法一般应用于较为稀疏的图,也就是顶点较多、而边较少的图。




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值