hdu 5417 RGCDQ 2015多校联合训练赛

本文详细介绍了RGCDQ算法的定义、原理以及具体实现步骤。通过实例演示了如何解决给定区间内的最大公共约数查找问题,适用于对算法设计和数论问题求解感兴趣的读者。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

RGCDQ

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 1283    Accepted Submission(s): 562


Problem Description
Mr. Hdu is interested in Greatest Common Divisor (GCD). He wants to find more and more interesting things about GCD. Today He comes up with Range Greatest Common Divisor Query (RGCDQ). What’s RGCDQ? Please let me explain it to you gradually. For a positive integer x, F(x) indicates the number of kind of prime factor of x. For example F(2)=1. F(10)=2, because 10=2*5. F(12)=2, because 12=2*2*3, there are two kinds of prime factor. For each query, we will get an interval [L, R], Hdu wants to know  maxGCD(F(i),F(j))   (Li<jR)
 

Input
There are multiple queries. In the first line of the input file there is an integer T indicates the number of queries.
In the next T lines, each line contains L, R which is mentioned above.

All input items are integers.
1<= T <= 1000000
2<=L < R<=1000000
 

Output
For each query,output the answer in a single line. 
See the sample for more details.
 

Sample Input
  
2 2 3 3 5
 

Sample Output
  
1 1
 

Source
 


每个数字最多7个质因数,数量全部预处理。然后看l,r中有几个数字有7,6.。。。1个质因子的,>= 2的就是一个gcd取最大值


#include<iostream>
#include<cstring>
#include<algorithm>
#include<cstdio>
using namespace std;

int pri[1000001];
int num[1000001];
int sum[1000001][10];
int inf = 1000000;
void init(){
    int ans = 0;
    memset(num,0,sizeof(num));
    for(int i = 2;i <= 1000000; i++){
        if(num[i] == 0){
            for(int j = i;j <= 1000000; j+=i)
                num[j] ++;
        }
    }
    memset(sum,0,sizeof(sum));
    for(int i = 1;i <= inf ;i++){
        for(int j = 1; j <= 7; j++)
            sum[i][j] = sum[i-1][j];
        sum[i][num[i]]++;
    }
}

int main(){
    int t,l,r;
    init();
    int s[10];
    while(scanf("%d",&t)!=EOF){
        while(t--){
            scanf("%d%d",&l,&r);
            for(int i = 1;i <= 7; i++)
                s[i] = sum[r][i] - sum[l-1][i];
            int ans = 1;
            for(int i = 7;i >= 1; i--){
                if(i == 2 && s[2] + s[4] + s[6] > 1)
                    ans = max(ans,2);
                else if(i == 3 && s[3] + s[6] > 1)
                    ans = max(ans,3);
                else if(s[i] > 1)
                    ans = max(ans,i);
            }
            printf("%d\n",ans);
        }
    }
    return 0;

}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

GDRetop

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值