Using Potential Fields in a Real-time Strategy Game Scenario (Tutorial)

本文介绍了一种用于实时战略(RTS)游戏的非常规规划与导航方法——多智能体势场法。该方法使游戏中的智能体能够实现在复杂动态环境中的导航,同时完成诸如搜索敌人、防御基地及协同攻击等任务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

see:http://aigamedev.com/open/tutorials/potential-fields/

Introduction

Bots for RTS games may be very challenging to implement. The bot controls an often very large number of units that will have to navigate in a large dynamic game world, while at the same time avoiding each other, searching for enemies, defending own bases, and coordinating attacks to hunt the enemy down. RTS games operate in real-time which can make planning and navigation difficult to handle.

This is a tutorial about an unconventional planning and navigation method that uses multi-agent potential fields.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值