【贪心算法】贪心算法二

在这里插入图片描述

点赞👍👍收藏🌟🌟关注💖💖
你的支持是对我最大的鼓励,我们一起努力吧!😃😃

1.最长递增子序列

题目链接: 300. 最长递增子序列

题目分析:

在这里插入图片描述

听懂这道题一定要把动态规划里面这道题解法搞清楚,我们的贪心策略其实是基于动态规划的解法,就是动态规划的解法的过程中发现可以用贪心优化的地方。还有优选算法那里的二分查找搞清楚。我们这里的贪心策略是要用这两个东西。

算法原理:

  1. 回顾 dp 的解法

状态表示:dp[i] 表示:以 i 位置的元素为结尾的所有子序列中, 最长递增子序列的长度

状态转移方程:dp[i] = max(dp[j] + 1) (j < i && nums[j] < nums[i])

更新dp[i] 的值,就是拿着nums[i] 去前面找,当找到一个位置发现这个位置的值,nums[j] < nums[i] 说明 i 可以拼在 j 的后面,此时就用这个dp[j]也就是以 j 位置为结尾的最长递增子序列的长度 然后 + 1 更新 dp[i] 的值。当把前面都找完此时dp[i]的值就是以 i 位置的元素为结尾的所有子序列中, 最长递增子序列的长度。

最核心的操作中,我们会发现一个性质:我们在考虑最长递增子序列的 “长度” 的时候,并不关心你这个序列长什么样子,我们仅关心你的 “最后一个元素” 是谁。

  1. 贪心优化

接下来我们用一个例子模拟一下贪心过程

从前到后扫描每一个元素,当扫描第一个位置的元素时候其实我们得到一个长度为1 的序列长什么样子。(但是我们只关心递增子序列长度为x中最后一个元素,并不关心序列长什么样子),这一点在上面已经说过了。

在这里插入图片描述

扫描到3的时候发现,3是接不到7后面,所以3这个元素单独形成一个长度为1的序列,现在又找到一个长度为1的序列最后一个元素是3。此时贪心策略就来了,当我发现长度为1递增子序列有两个的时候,较大的就没有必要存了。

原因就是,所有能接到7后面的数,铁定能接到3这个数的后面,所以我们不需要存较大的7,仅需存较小的3就可以判断后面的数是否能拼到长度为1的序列后面。

这里就是我们的第一个贪心策略,存最后一个元素的时候,仅需存储最小值。

在这里插入图片描述

扫描8的时候,此时第二个贪心策略来了。我们其实有两种策略,第一种让8单独形成一个长度为1的序列,第二种要么让8拼到3的后面形成一个长度为2的序列。此时我们贪心选择第二种策略。因为要找最长递增子序列。

在这里插入图片描述

扫描到4,发现4能放到长度为1的3后面,但是不放,太浪费了,所以往下放,发现4可以自己形成一个长度为2,但是发现4小于8,所以贪心把8干掉,把4放好。

上面的过程就是,发现4能放到长度为1的3后面,但是不放。往下放,发现4能不能放到8后面,就把4放到这里,同时利用第二个贪心策略只存最小值的时候,把8干掉,4留下。

在这里插入图片描述

扫描到7,也是一样,7能拼到3后面就不放,7能拼到4后面也不放,所以7形成一个长度为3的序列

在这里插入图片描述
扫描到2,发现2拼不到3后面,只能把2放到长度为1,但是2比3小,能拼接到3后面一定能拼接到2后面,所以3干掉,保留2

在这里插入图片描述

扫描到14,发现能拼接到2,4,7后面但是都不放,所以14单独形成一个长度为4的序列

在这里插入图片描述

扫描到13,发现能拼接到2,4,7后面但是不放,不能放14后面,就放14后面,同时13比14小,14干掉,13保留

在这里插入图片描述

当整个数组扫描完,我们发现长度仅从1更新到4,所以最长递增子序列的长度就是4。

虽然这里拼接的序列并不是最终的序列,但是能统计到4,就是我们的最长递增子序列的长度。

这里我们总结一下贪心策略:

我们的贪心策略就体现在两个地方:存什么,存哪里

在这里插入图片描述

这里的贪心策略的提出就是交换论证法的思想,比如能拼接7的后面的数,铁定能拼接到3的后面,这不就是交换论证吗。

这里已经说明为什么贪心策略是对的,但是我们分析一下贪心的时间复杂度,存什么肯定是拿一个数组去存,下标为0存长度为1的最小值、下标为1存长度为2的最小值…,最耗时的就是存哪里,如果是来了一个数从前往后扫描比较时间复杂度是O(n),那整体时间复杂度还是O(N^2),这个好像和动规是一样的。那还贪心什么呢?比动规还难理解。

我们还可以发现,我们贪心得到的数组,其实还有优化的地方

  1. 利用二分优化

我们发现存长度为x的最小值数组里面的值是递增有序的。此时我们在找存哪里插入位置的时候,可以用二分快速找到插入位置。

假设来一个x,我们要找的是所有大于等于x的最小值,右边都是大于等于x,左边是小于x,这就有了二段性。就可以用二分查找了。

在这里插入图片描述

证明数组是递增的。

直接证明:

第一个元素来了直接就是一个点,第二个元素来发现能拼在第一个元素后面所以重新开一个点,如果不能放就把这个元素覆盖到原始元素,这里有个不等关系,这个元素大于前一个元素,小于后一个元素。递增是不会改变的。

在这里插入图片描述

回归一下二分,定义一

评论 79
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值