不容易系列之(4)——考新郎
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 21313 Accepted Submission(s): 7842
Problem Description
国庆期间,省城HZ刚刚举行了一场盛大的集体婚礼,为了使婚礼进行的丰富一些,司仪临时想出了有一个有意思的节目,叫做"考新郎",具体的操作是这样的:
首先,给每位新娘打扮得几乎一模一样,并盖上大大的红盖头随机坐成一排;
然后,让各位新郎寻找自己的新娘.每人只准找一个,并且不允许多人找一个.
最后,揭开盖头,如果找错了对象就要当众跪搓衣板...
看来做新郎也不是容易的事情...
假设一共有N对新婚夫妇,其中有M个新郎找错了新娘,求发生这种情况一共有多少种可能.
Input
输入数据的第一行是一个整数C,表示测试实例的个数,然后是C行数据,每行包含两个整数N和M(1<M<=N<=20)。
Output
对于每个测试实例,请输出一共有多少种发生这种情况的可能,每个实例的输出占一行。
Sample Input
2
2 2
3 2
Sample Output
1
递推题
N张票的所有排列可能自然是Ann = N!种排列方式
现在的问题就是N张票的错排方式有几种。
首先我们考虑,如果前面N-1个人拿的都不是自己的票,即前N-1个人满足错排,现在又来了一个人,他手里拿的是自己的票。
只要他把自己的票与其他N-1个人中的任意一个交换,就可以满足N个人的错排。这时有N-1种方法。
另外,我们考虑,如果前N-1个人不满足错排,而第N个人把自己的票与其中一个人交换后恰好满足错排。
这种情况发生在原先N-1人中,N-2个人满足错排,有且仅有一个人拿的是自己的票,而第N个人恰好与他做了交换,这时候就满足了错排。
因为前N-1个人中,每个人都有机会拿着自己的票。所以有N-1种交换的可能。
综上所述:f(n) = (i - 1) * [f(n - 1) + f(n - 2)]
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 21313 Accepted Submission(s): 7842
Problem Description
国庆期间,省城HZ刚刚举行了一场盛大的集体婚礼,为了使婚礼进行的丰富一些,司仪临时想出了有一个有意思的节目,叫做"考新郎",具体的操作是这样的:
首先,给每位新娘打扮得几乎一模一样,并盖上大大的红盖头随机坐成一排;
然后,让各位新郎寻找自己的新娘.每人只准找一个,并且不允许多人找一个.
最后,揭开盖头,如果找错了对象就要当众跪搓衣板...
看来做新郎也不是容易的事情...
假设一共有N对新婚夫妇,其中有M个新郎找错了新娘,求发生这种情况一共有多少种可能.
Input
输入数据的第一行是一个整数C,表示测试实例的个数,然后是C行数据,每行包含两个整数N和M(1<M<=N<=20)。
Output
对于每个测试实例,请输出一共有多少种发生这种情况的可能,每个实例的输出占一行。
Sample Input
2
2 2
3 2
Sample Output
1
3
错排加排列组合,不多说,注意p,q的初始化,否则会提示除0错误,上代码,后附有原理说明
#include<stdio.h>
int main()
{
int a,n,m,i;
__int64 p;
__int64 q;
__int64 cuopai[22]={0,0,1,2};
for(i=4;i<22;i++)
{
cuopai[i]=(i-1)*(cuopai[i-1]+cuopai[i-2]);
}
scanf("%d",&a);
while(a--)
{
scanf("%d%d",&n,&m);
p=1;q=1;
for(i=n;i>n-m;i--)
p*=i;
for(i=m;i>1;i--)
q*=i;
printf("%I64d\n",p/q*cuopai[m]);
}
return 0;
}
原理(来自百度知道)递推题
N张票的所有排列可能自然是Ann = N!种排列方式
现在的问题就是N张票的错排方式有几种。
首先我们考虑,如果前面N-1个人拿的都不是自己的票,即前N-1个人满足错排,现在又来了一个人,他手里拿的是自己的票。
只要他把自己的票与其他N-1个人中的任意一个交换,就可以满足N个人的错排。这时有N-1种方法。
另外,我们考虑,如果前N-1个人不满足错排,而第N个人把自己的票与其中一个人交换后恰好满足错排。
这种情况发生在原先N-1人中,N-2个人满足错排,有且仅有一个人拿的是自己的票,而第N个人恰好与他做了交换,这时候就满足了错排。
因为前N-1个人中,每个人都有机会拿着自己的票。所以有N-1种交换的可能。
综上所述:f(n) = (i - 1) * [f(n - 1) + f(n - 2)]