目录
一、CAS原理
(一)简介和特点
无锁编程:Lock Free
CAS 的全称是 Compare-And-Swap,是 CPU 并发原语
-
CAS 并发原语体现在 Java 语言中就是 sun.misc.Unsafe 类的各个方法,调用 UnSafe 类中的 CAS 方法,JVM 会实现出 CAS 汇编指令,这是一种完全依赖于硬件的功能,实现了原子操作
-
CAS 是一种系统原语,原语属于操作系统范畴,是由若干条指令组成 ,用于完成某个功能的一个过程,并且原语的执行必须是连续的,执行过程中不允许被中断,所以 CAS 是一条 CPU 的原子指令,不会造成数据不一致的问题,是线程安全的
底层原理:CAS 的底层是 lock cmpxchg
指令(X86 架构),在单核和多核 CPU 下都能够保证比较交换的原子性
-
程序是在单核处理器上运行,会省略 lock 前缀,单处理器自身会维护处理器内的顺序一致性,不需要 lock 前缀的内存屏障效果
-
程序是在多核处理器上运行,会为 cmpxchg 指令加上 lock 前缀。当某个核执行到带 lock 的指令时,CPU 会执行总线锁定或缓存锁定,将修改的变量写入到主存,这个过程不会被线程的调度机制所打断,保证了多个线程对内存操作的原子性
作用:比较当前工作内存中的值和主物理内存中的值,如果相同则执行规定操作,否则继续比较直到主内存和工作内存的值一致为止
CAS 特点:
CAS 体现的是无锁并发、无阻塞并发,线程不会陷入阻塞,线程不需要频繁切换状态(上下文切换,系统调用)
CAS 是基于乐观锁的思想
CAS 缺点:
执行的是循环操作,如果比较不成功一直在循环,最差的情况某个线程一直取到的值和预期值都不一样,就会无限循环导致饥饿,使用 CAS 线程数不要超过 CPU 的核心数,采用分段 CAS 和自动迁移机制
只能保证一个共享变量的原子操作
对于一个共享变量执行操作时,可以通过循环 CAS 的方式来保证原子操作
对于多个共享变量操作时,循环 CAS 就无法保证操作的原子性,这个时候只能用锁来保证原子性
导致 ABA 问题
(二)ABA
ABA 问题:当进行获取主内存值时,该内存值在写入主内存时已经被修改了 N 次,但是最终又改成原来的值
其他线程先把 A 改成 B 又改回 A,主线程仅能判断出共享变量的值与最初值 A 是否相同,不能感知到这种从 A 改为 B 又 改回 A 的情况,这时 CAS 虽然成功,但是过程存在问题
-
构造方法:
-
public AtomicStampedReference(V initialRef, int initialStamp)
:初始值和初始版本号
-
-
常用API:
-
public boolean compareAndSet(V expectedReference, V newReference, int expectedStamp, int newStamp)
:期望引用和期望版本号都一致才进行 CAS 修改数据 -
public void set(V newReference, int newStamp)
:设置值和版本号 -
public V getReference()
:返回引用的值 -
public int getStamp()
:返回当前版本号
-
public static void main(String[] args) {
AtomicStampedReference<Integer> atomicReference = new AtomicStampedReference<>(100,1);
int startStamp = atomicReference.getStamp();
new Thread(() ->{
int stamp = atomicReference.getStamp();
atomicReference.compareAndSet(100, 101, stamp, stamp + 1);
stamp = atomicReference.getStamp();
atomicReference.compareAndSet(101, 100, stamp, stamp + 1);
},"t1").start();
new Thread(() ->{
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
if (!atomicReference.compareAndSet(100, 200, startStamp, startStamp + 1)) {
System.out.println(atomicReference.getReference());//100
System.out.println(Thread.currentThread().getName() + "线程修改失败");
}
},"t2").start();
}
(三)CAS 与 synchronized
-
synchronized 是从悲观的角度出发:总是假设最坏的情况,每次去拿数据的时候都认为别人会修改,所以每次在拿数据的时候都会上锁,这样别人想拿这个数据就会阻塞(共享资源每次只给一个线程使用,其它线程阻塞,用完后再把资源转让给其它线程),因此 synchronized 也称之为悲观锁,ReentrantLock 也是一种悲观锁,性能较差
-
CAS 是从乐观的角度出发:总是假设最好的情况,每次去拿数据的时候都认为别人不会修改,所以不会上锁,但是在更新的时候会判断一下在此期间别人有没有去更新这个数据。如果别人修改过,则获取现在最新的值,如果别人没修改过,直接修改共享数据的值,CAS 这种机制也称之为乐观锁,综合性能较好
(四)CAS操作示例
假设有两个线程(Thread-1和Thread-2)同时尝试通过CAS操作将AtomicInteger
的值从0
更新为1
:
import java.util.concurrent.atomic.AtomicInteger;
public class CASExample {
public static void main(String[] args) {
AtomicInteger atomicInt = new AtomicInteger(0); // 初始值为0
// Thread-1尝试CAS(0→1)
new Thread(() -> {
boolean success = atomicInt.compareAndSet(0, 1); // 预期值0,新值1
System.out.println("Thread-1: " + success); // 输出true
}).start();
// Thread-2尝试CAS(0→1)
new Thread(() -> {
boolean success = atomicInt.compareAndSet(0, 1); // 预期值0,新值1
System.out.println("Thread-2: " + success); // 输出false
}).start();
}
}
流程图:
二、Atomic
(一)常用API
常见原子类:AtomicInteger、AtomicBoolean、AtomicLong
构造方法:
-
public AtomicInteger()
:初始化一个默认值为 0 的原子型 Integer -
public AtomicInteger(int initialValue)
:初始化一个指定值的原子型 Integer
常用API:
方法 | 作用 |
---|---|
public final int get() | 获取 AtomicInteger 的值 |
public final int getAndIncrement() | 以原子方式将当前值加 1,返回的是自增前的值 |
public final int incrementAndGet() | 以原子方式将当前值加 1,返回的是自增后的值 |
public final int getAndSet(int value) | 以原子方式设置为 newValue 的值,返回旧值 |
public final int addAndGet(int data) | 以原子方式将输入的数值与实例中的值相加并返回 实例:AtomicInteger 里的 value |
(二)原理分析
AtomicInteger 原理:自旋锁 + CAS 算法
CAS 算法:有 3 个操作数(内存值 V, 旧的预期值 A,要修改的值 B)
-
当旧的预期值 A == 内存值 V 此时可以修改,将 V 改为 B
-
当旧的预期值 A != 内存值 V 此时不能修改,并重新获取现在的最新值,重新获取的动作就是自旋
分析 getAndSet 方法:
-
AtomicInteger:
public final int getAndSet(int newValue) {
/**
* this: 当前对象
* valueOffset: 内存偏移量,内存地址
*/
return unsafe.getAndSetInt(this, valueOffset, newValue);
}
valueOffset:偏移量表示该变量值相对于当前对象地址的偏移,Unsafe 就是根据内存偏移地址获取数据
valueOffset = unsafe.objectFieldOffset
(AtomicInteger.class.getDeclaredField("value"));
//调用本地方法 -->
public native long objectFieldOffset(Field var1);
- unsafe 类:
// val1: AtomicInteger对象本身,var2: 该对象值得引用地址,var4: 需要变动的数
public final int getAndSetInt(Object var1, long var2, int var4) {
int var5;
do {
// var5: 用 var1 和 var2 找到的内存中的真实值
var5 = this.getIntVolatile(var1, var2);
} while(!this.compareAndSwapInt(var1, var2, var5, var4));
return var5;
}
var5:从主内存中拷贝到工作内存中的值(每次都要从主内存拿到最新的值到本地内存),然后执行 compareAndSwapInt()
再和主内存的值进行比较,假设方法返回 false,那么就一直执行 while 方法,直到期望的值和真实值一样,修改数据
-
变量 value 用 volatile 修饰,保证了多线程之间的内存可见性,避免线程从工作缓存中获取失效的变量
private volatile int value
CAS 必须借助 volatile 才能读取到共享变量的最新值来实现比较并交换的效果
分析 getAndUpdate 方法:
-
getAndUpdate:
public final int getAndUpdate(IntUnaryOperator updateFunction) {
int prev, next;
do {
prev = get(); //当前值,cas的期望值
next = updateFunction.applyAsInt(prev);//期望值更新到该值
} while (!compareAndSet(prev, next));//自旋
return prev;
}
函数式接口:可以自定义操作逻辑
AtomicInteger a = new AtomicInteger();
a.getAndUpdate(i -> i + 10);
- compareAndSet:
public final boolean compareAndSet(int expect, int update) {
/**
* this: 当前对象
* valueOffset: 内存偏移量,内存地址
* expect: 期望的值
* update: 更新的值
*/
return unsafe.compareAndSwapInt(this, valueOffset, expect, update);
}
(三)原子引用
原子引用:对 Object 进行原子操作,提供一种读和写都是原子性的对象引用变量
原子引用类:AtomicReference、AtomicStampedReference、AtomicMarkableReference
AtomicReference 类:
-
构造方法:
AtomicReference<T> atomicReference = new AtomicReference<T>()
-
常用 API:
-
public final boolean compareAndSet(V expectedValue, V newValue)
:CAS 操作 -
public final void set(V newValue)
:将值设置为 newValue -
public final V get()
:返回当前值
-
public class AtomicReferenceDemo {
public static void main(String[] args) {
Student s1 = new Student(33, "z3");
// 创建原子引用包装类
AtomicReference<Student> atomicReference = new AtomicReference<>();
// 设置主内存共享变量为s1
atomicReference.set(s1);
// 比较并交换,如果现在主物理内存的值为 z3,那么交换成 l4
while (true) {
Student s2 = new Student(44, "l4");
if (atomicReference.compareAndSet(s1, s2)) {
break;
}
}
System.out.println(atomicReference.get());
}
}
class Student {
private int id;
private String name;
//。。。。
}
(四)原子数组
原子数组类:AtomicIntegerArray、AtomicLongArray、AtomicReferenceArray
AtomicIntegerArray 类方法:
/**
* i the index
* expect the expected value
* update the new value
*/
public final boolean compareAndSet(int i, int expect, int update) {
return compareAndSetRaw(checkedByteOffset(i), expect, update);
}
(五)原子更新器
原子更新器类:AtomicReferenceFieldUpdater、AtomicIntegerFieldUpdater、AtomicLongFieldUpdater
利用字段更新器,可以针对对象的某个域(Field)进行原子操作,只能配合 volatile 修饰的字段使用,否则会出现异常 IllegalArgumentException: Must be volatile type
常用 API:
-
static <U> AtomicIntegerFieldUpdater<U> newUpdater(Class<U> c, String fieldName)
:构造方法 -
abstract boolean compareAndSet(T obj, int expect, int update)
:CAS
public class UpdateDemo {
private volatile int field;
public static void main(String[] args) {
AtomicIntegerFieldUpdater fieldUpdater = AtomicIntegerFieldUpdater
.newUpdater(UpdateDemo.class, "field");
UpdateDemo updateDemo = new UpdateDemo();
fieldUpdater.compareAndSet(updateDemo, 0, 10);
System.out.println(updateDemo.field);//10
}
}
(六)原子累加器
原子累加器类:LongAdder、DoubleAdder、LongAccumulator、DoubleAccumulator
LongAdder 和 LongAccumulator 区别:
相同点:
-
LongAddr 与 LongAccumulator 类都是使用非阻塞算法 CAS 实现的
-
LongAddr 类是 LongAccumulator 类的一个特例,只是 LongAccumulator 提供了更强大的功能,可以自定义累加规则,当accumulatorFunction 为 null 时就等价于 LongAddr
不同点:
-
调用 casBase 时,LongAccumulator 使用 function.applyAsLong(b = base, x) 来计算,LongAddr 使用 casBase(b = base, b + x)
-
LongAccumulator 类功能更加强大,构造方法参数中
-
accumulatorFunction 是一个双目运算器接口,可以指定累加规则,比如累加或者相乘,其根据输入的两个参数返回一个计算值,LongAdder 内置累加规则
-
identity 则是 LongAccumulator 累加器的初始值,LongAccumulator 可以为累加器提供非0的初始值,而 LongAdder 只能提供默认的 0
-