Codeforces Round #551 (Div. 2) D. Serval and Rooted Tree(dp)

本文介绍了一种数学竞赛题目的解决方案,通过树形结构和动态规划算法,实现对根节点数值的最大化。问题设定在一个有n个节点的带根树上,每个非叶节点都有min或max操作,目标是在叶子节点放置1到k的整数,使得根节点的数值最大。

D. Serval and Rooted Tree
time limit per test2 seconds
memory limit per test256 megabytes
inputstandard input
outputstandard output
Now Serval is a junior high school student in Japari Middle School, and he is still thrilled on math as before.

As a talented boy in mathematics, he likes to play with numbers. This time, he wants to play with numbers on a rooted tree.

A tree is a connected graph without cycles. A rooted tree has a special vertex called the root. A parent of a node v is the last different from v vertex on the path from the root to the vertex v. Children of vertex v are all nodes for which v is the parent. A vertex is a leaf if it has no children.

The rooted tree Serval owns has n nodes, node 1 is the root. Serval will write some numbers into all nodes of the tree. However, there are some restrictions. Each of the nodes except leaves has an operation max or min written in it, indicating that the number in this node should be equal to the maximum or minimum of all the numbers in its sons, respectively.

Assume that there are k leaves in the tree. Serval wants to put integers 1,2,…,k to the k leaves (each number should be used exactly once). He loves large numbers, so he wants to maximize the number in the root. As his best friend, can you help him?

Input
The first line contains an integer n (2≤n≤3⋅105), the size of the tree.

The second line contains n integers, the i-th of them represents the operation in the node i. 0 represents min and 1 represents max. If the node is a leaf, there is still a number of 0 or 1, but you can ignore it.

The third line contains n−1 integers f2,f3,…,fn (1≤fi≤i−1), where fi represents the parent of the node i.

Output
Output one integer — the maximum possible number in the root of the tree.

Examples
inputCopy
6
1 0 1 1 0 1
1 2 2 2 2
outputCopy
1
inputCopy
5
1 0 1 0 1
1 1 1 1
outputCopy
4
inputCopy
8
1 0 0 1 0 1 1 0
1 1 2 2 3 3 3
outputCopy
4
inputCopy
9
1 1 0 0 1 0 1 0 1
1 1 2 2 3 3 4 4
outputCopy
5
Note
Pictures below explain the examples. The numbers written in the middle of the nodes are their indices, and the numbers written on the top are the numbers written in the nodes.

In the first example, no matter how you arrange the numbers, the answer is 1.

In the second example, no matter how you arrange the numbers, the answer is 4.

In the third example, one of the best solution to achieve 4 is to arrange 4 and 5 to nodes 4 and 5.

In the fourth example, the best solution is to arrange 5 to node 5.

解析

dp[i]表示这个节点的值在其子节点的所有值的排序

如果一个树结构是确定的话
为了使根节点的值最大,dp就是确定的

两种更新方式
如果是节点类型min,那么这个节点的值就是最小的
就让根节点的值等于子节点的dp值加起来即可
如果节点类型是max,那么这个节点的值就是最大的
这时候dp的最小值即可(因为dp[i]表示这个节点的值在其子节点的所有值的排序 )

code

#include <bits/stdc++.h>

using namespace std;
const int N=3e5+10;
int ar[N];
int dp[N];//表示这个节点的值在其子节点的所有值的排序
vector<int>G[N];
int num=0;
void dfs(int x ){
    if(G[x].size()==0){
        dp[x]=1;
        num++;
        return ;
    }
    for(int i=0;i<G[x].size();i++){
        int y=G[x][i];
        dfs(y);
        if(ar[x]){
            if(dp[x]==0)
                dp[x]=dp[y];
            else
                dp[x]=min(dp[x],dp[y]);

        }
        else {
            dp[x]+=dp[y];
        }
    }
}
int main()
{
    ios::sync_with_stdio(0);
    int n;
    cin>>n;
    for(int i=1;i<=n;i++){
        cin>>ar[i];
    }
    for(int i=2;i<=n;i++){
        int a ;
        cin>>a;
        G[a].push_back(i);
    }
    dfs(1);
    cout<<num+1-dp[1]<<endl;
    return 0;
}

内容概要:本文介绍了ENVI Deep Learning V1.0的操作教程,重点讲解了如何利用ENVI软件进行深度学习模型的训练与应用,以实现遥感图像中特定目标(如集装箱)的自动提取。教程涵盖了从数据准备、标签图像创建、模型初始化与训练,到执行分类及结果优化的完整流程,并介绍了精度评价与通过ENVI Modeler实现一键化建模的方法。系统基于TensorFlow框架,采用ENVINet5(U-Net变体)架构,支持通过点、线、面ROI或分类图生成标签数据,适用于多/高光谱影像的单一类别特征提取。; 适合人群:具备遥感图像处理基础,熟悉ENVI软件操作,从事地理信息、测绘、环境监测等相关领域的技术人员或研究人员,尤其是希望将深度学习技术应用于遥感目标识别的初学者与实践者。; 使用场景及目标:①在遥感影像中自动识别和提取特定地物目标(如车辆、建筑、道路、集装箱等);②掌握ENVI环境下深度学习模型的训练流程与关键参数设置(如Patch Size、Epochs、Class Weight等);③通过模型调优与结果反馈提升分类精度,实现高效自动化信息提取。; 阅读建议:建议结合实际遥感项目边学边练,重点关注标签数据制作、模型参数配置与结果后处理环节,充分利用ENVI Modeler进行自动化建模与参数优化,同时注意软硬件环境(特别是NVIDIA GPU)的配置要求以保障训练效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值