322. Coin Change

本文探讨了CoinChange问题,即给定不同面额的硬币和一个总金额,如何用最少数量的硬币凑出该金额。介绍了两种解法:一种是超时的暴力解法;另一种是使用动态规划进行优化的高效解法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

322. Coin Change

题目:
You are given coins of different denominations and a total amount of money amount. Write a function to compute the fewest number of coins that you need to make up that amount. If that amount of money cannot be made up by any combination of the coins, return -1.

Note:
You may assume that you have an infinite number of each kind of coin.

Example 1:

coins = [1, 2, 5], amount = 11
return 3 (11 = 5 + 5 + 1)

Example 2:

coins = [2], amount = 3
return -1.
代码:

暴力解法(超时):

class Solution {
public:
    int coinChange(vector<int>& coins, int amount) {
        sort(coins.begin(), coins.end());
        vector<vector<int>> answer;
        vector<int> sol;
        getCom(sol, answer, coins, amount, 0);
        if (answer.size() == 0) return -1;
        else {
            vector<int> min = answer[0];
            for (int i = 0; i < answer.size(); i++) {
                if (answer[i].size() < min.size())
                    min = answer[i];
            }
            return min.size();
        }
    }
    void getCom(vector<int>& sol, vector<vector<int>>& res, vector<int>& coins, int amount, int start) {
        if (!amount) {
            res.push_back(sol);
            return;
        }
        for (int i = start; i < coins.size() && amount >= coins[i]; i++) {
            sol.push_back(coins[i]);
            getCom(sol, res, coins, amount - coins[i], i);
            sol.pop_back();
        }
    }
};

优化版:

class Solution {
public:
    int coinChange(vector<int>& coins, int amount) {
        int Max = amount + 1;
        vector<int> dp(amount + 1, Max);
        dp[0] = 0;
        for (int i = 1; i <= amount; i++) {
            for (int j = 0; j < coins.size(); j++) {
                if (coins[j] <= i) {
                    dp[i] = min(dp[i], dp[i - coins[j]] + 1);
                }
            }
        }
        return dp[amount] > amount ? -1 : dp[amount];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值