直接贴源码:
# @TIME :2019/7/21 15:34
# @File :coco2xml.py
"""从coco instance.json生成voc--xml文件"""
"""
首先得下载编译cocoapi
pip install cython
git clone https://github.com/cocodataset/cocoapi.git
cd coco/PythonAPI
make
"""
import sys
bag_path = "../cocoapi-master/PythonAPI/"
if not bag_path in sys.path:
sys.path.append(bag_path)
from pycocotools.coco import COCO
import os
import shutil
from tqdm import tqdm
import skimage.io as io
import matplotlib.pyplot as plt
import cv2
from PIL import Image, ImageDraw
# the path you want to save your results for coco to voc
savepath = "../result/"#保存生成文件路径
img_dir = savepath + 'images/'#保存生成jpg文件路径
anno_dir = savepath + 'Annotations/'#保存生成xml文件路径
# datasets_list=['train2014', 'val2014']
datasets_list = ['train2017']#coco数据集里面图片
# Store annotations and train2014/val2014/... in this folder
dataDir = '../../coco/coco2017/'#coco数据集整体文件,里面包含annotations和图片文件夹
#path = os.path.abspath(dataDir)
#print(path)
headstr = """\
<annotation>
<folder>VOC</folder>
<filename>%s</filename>
<source>
<database>My Database</database>
<annotation>COCO</annotation>
<image>flickr</image>
<flickrid>NULL</flickrid>
</source>
<owner>
<flickrid>NULL</flickrid>
<name>company</name>
</owner>
<size>
<width>%d</width>
<height>%d</height>
<depth>%d</depth>
</size>
<segmented>0</segmented>
"""
objstr = """\
<object>
<name>%s</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>%d</xmin>
<ymin>%d</ymin>
<xmax>%d</xmax>
<ymax>%d</ymax>
</bndbox>
</object>
"""
tailstr = '''\
</annotation>
'''
# if the dir is not exists,make it,else delete it
def mkr(path):
if os.path.exists(path):
shutil.rmtree(path)
os.mkdir(path)
else:
os.mkdir(path)
mkr(img_dir)
mkr(anno_dir)
def id2name(coco):
classes = dict()
for cls in coco.dataset['categories']:
classes[cls['id']] = cls['name']
return classes
def write_xml(anno_path, head, objs, tail):
f = open(anno_path, "w")
f.write(head)
for obj in objs:
f.write(objstr % (obj[0], obj[1], obj[2], obj[3], obj[4]))
f.write(tail)
def save_annotations_and_imgs(coco, dataset, filename, objs):
# eg:COCO_train2014_000000196610.jpg-->COCO_train2014_000000196610.xml
anno_path = anno_dir + filename[:-3] + 'xml'
img_path = dataDir + dataset + '/' + filename
#print(img_path)
dst_imgpath = img_dir + filename
img = cv2.imread(img_path)
if (img.shape[2] == 1):
#print(filename + " not a RGB image")
return
shutil.copy(img_path, dst_imgpath)
head = headstr % (filename, img.shape[1], img.shape[0], img.shape[2])
tail = tailstr
write_xml(anno_path, head, objs, tail)
def showimg(coco, dataset, img, classes, cls_id, show=True):
global dataDir
I = Image.open('%s/%s/%s' % (dataDir, dataset, img['file_name']))
# 通过id,得到注释的信息
annIds = coco.getAnnIds(imgIds=img['id'], catIds=cls_id, iscrowd=None)
# print(annIds)
anns = coco.loadAnns(annIds)
# print(anns)
# coco.showAnns(anns)
objs = []
for ann in anns:
class_name = classes[ann['category_id']]
if 'bbox' in ann:
bbox = ann['bbox']
xmin = int(bbox[0])
ymin = int(bbox[1])
xmax = int(bbox[2] + bbox[0])
ymax = int(bbox[3] + bbox[1])
obj = [class_name, xmin, ymin, xmax, ymax]
objs.append(obj)
draw = ImageDraw.Draw(I)
draw.rectangle([xmin, ymin, xmax, ymax])
if show:
plt.figure()
plt.axis('off')
plt.imshow(I)
plt.show()
return objs
for dataset in datasets_list:
# ./COCO/annotations/instances_train2014.json
annFile = '{}/annotations/instances_{}.json'.format(dataDir, dataset)
# COCO API for initializing annotated data
coco = COCO(annFile)
'''
COCO 对象创建完毕后会输出如下信息:
loading annotations into memory...
Done (t=0.81s)
creating index...
index created!
至此, json 脚本解析完毕, 并且将图片和对应的标注数据关联起来.
'''
# show all classes in coco
classes = id2name(coco)
classes_names = []
for key, value in classes.items():
classes_names.append(value)
classes_ids = coco.getCatIds(catNms=classes_names)
img_ids_totoal =[]
for cls in classes_names:
# Get ID number of this class
cls_id = coco.getCatIds(catNms=[cls])
img_ids = coco.getImgIds(catIds=cls_id)
for img_id in img_ids:
img_ids_totoal.append(img_id)
print(len(img_ids_totoal))
tem=set(img_ids_totoal)
temp = list(tem)
temp.sort()
print(len(tem))
print(len(temp))
for imgId in tqdm(temp):
img = coco.loadImgs(imgId)[0]
filename = img['file_name']
# print(filename)
objs = showimg(coco, dataset, img, classes, classes_ids, show=False)
# print(objs)
save_annotations_and_imgs(coco, dataset, filename, objs)
参考:
- https://blog.youkuaiyun.com/weixin_39881922/article/details/85120379
- https://www.jianshu.com/p/16b2e32d9edf
- https://blog.youkuaiyun.com/ouyangfushu/article/details/79543575

本文介绍了一种从COCO数据集格式转换到VOC格式的方法,包括使用Python脚本解析COCO的JSON文件并生成VOC所需的XML标注文件。此过程涵盖了数据集的下载、COCO API的安装与使用、图像和标注信息的处理等关键步骤。
435

被折叠的 条评论
为什么被折叠?



