RANSAC Machine--C++ code

本文介绍了一种基于RANSAC算法的实现方法,用于从三维点云数据中检测并拟合椭圆。通过随机抽样一致性算法筛选出符合椭圆模型的数据点,以提高检测准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

vector<CvPoint3D32f> MachineVisionDetection::RansacMachine(vector<CvPoint3D32f> SourcePoint,int k)
{
  int index1,index2,index3;
  int iterations=0;//迭代标记
  double Len=0;
  vector<double> Dist;
  StereoEllipse result1;
  vector<CvPoint3D32f> TestData(3);
  vector<CvPoint3D32f> ReturnPoint;
  int countnum = SourcePoint.size();
  while(!iterations)
  {
       index1=rand()%countnum;
       index2=index1;
       index3=index1;
       if(abs(index1-index2)<15&&abs(index1-index3)&&abs(index2-index3))
       {
        index2=rand()%countnum;
        index3=rand()%countnum;
        }
    TestData[0]=SourcePoint[index1];
    TestData[1]=SourcePoint[index2];
    TestData[2]=SourcePoint[index3];
    result1=fitStereoEllipse(TestData);
    CvPoint3D32f pointcenter;
    pointcenter=result1.center;
    for(int i=0;i<countnum;i++)
    {
     Dist[i]=cv::sqrt((SourcePoint[i].x-pointcenter.x)*(SourcePoint[i].x-pointcenter.x)+
                   (SourcePoint[i].y-pointcenter.y)*(SourcePoint[i].y-pointcenter.y)+
             (SourcePoint[i].z-pointcenter.z)*(SourcePoint[i].z-pointcenter.z));
    }
    int j=0;
    for(int i=0;i<countnum;i++)
    {
      Len=abs(Dist[i]-result1.r);
      if(Len<0.15*result1.r)
      {
       ReturnPoint[j]=SourcePoint[i];
       j++;
      }
    }
    int no=ReturnPoint.size();
    if(no>0.8*countnum)
    {
           iterations=1;
    }
  }
  return ReturnPoint;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值