KAL,MAN

 Kalman滤波算法的C++实现

2人收藏此文章, 我要收藏发表于2年前(2010-10-02 16:11) , 已有 1372次阅读 共 0个评论

头文件:

/*
 * Copyright (c) 2008-2011 Zhang Ming (M. Zhang), zmjerry@163.com
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the
 * Free Software Foundation, either version 2 or any later version.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice,
 *    this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
 * more details. A copy of the GNU General Public License is available at:
 * http://www.fsf.org/licensing/licenses
 */


/*****************************************************************************
 *                                   kalman.h
 *
 * Kalman Filter.
 *
 * The Kalman filter is an efficient recursive filter that estimates the
 * internal state of a linear dynamic system from a series of noisy
 * measurements. In most applications, the internal state is much larger
 * (more degrees of freedom) than the few "observable" parameters which are
 * measured. However, by combining a series of measurements, the Kalman
 * filter can estimate the entire internal state.
 *
 * A wide variety of Kalman filters have now been developed, from Kalman's
 * original formulation, now called the simple Kalman filter, the Kalman-Bucy
 * filter, Schmidt's extended filter, the information filter, and a variety
 * of square-root filters that were developed by Bierman, Thornton and so on.
 *
 * Zhang Ming, 2010-10, Xi'an Jiaotong University.
 *****************************************************************************/


#ifndef KALMAN_H
#define KALMAN_H


#include <vector.h>
#include <matrix.h>
#include <inverse.h>


namespace splab
{

    template<typename Type>
    Vector<Type> kalman( const Matrix<Type>&, const Matrix<Type>&,
                         const Matrix<Type>&, const Matrix<Type>&,
                         const Vector<Type>&, const Vector<Type>&,
                         const Vector<Type>& );


    #include <kalman-impl.h>

}
// namespace splab


#endif
// KALMAN_H

实现文件:

/*
 * Copyright (c) 2008-2011 Zhang Ming (M. Zhang), zmjerry@163.com
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the
 * Free Software Foundation, either version 2 or any later version.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice,
 *    this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
 * more details. A copy of the GNU General Public License is available at:
 * http://www.fsf.org/licensing/licenses
 */


/*****************************************************************************
 *                              kalman-impl.h
 *
 * Implementation for Kalman Filter.
 *
 * Zhang Ming, 2010-10, Xi'an Jiaotong University.
 *****************************************************************************/


/**
 * The simple Kalman filter for one step.
 * A ---> system matrix defining linear dynamic system
 * C ---> measurement matrix defining relationship between system's state
 *        and measurements
 * Q ---> covariance matrix of process noise in system state dynamics
 * R ---> covariance matrix of measurements uncertainty
 * y ---> measurements at time t
 * xPrev ---> previous estimated state vector of the linear dynamic system
 * initDiagV ---> diagonal vector for initializing the covariance matrix of
 *                state estimation uncertainty
 */
template <typename Type>
Vector<Type> kalman( const Matrix<Type> &A, const Matrix<Type> &C,
                     const Matrix<Type> &Q, const Matrix<Type> &R,
                     const Vector<Type> &xPrev, const Vector<Type> &y,
                     const Vector<Type> &initDiagV )
{
    int N = xPrev.size();

    // covariance matrix of state estimation uncertainty
    static Matrix<Type> V = diag(initDiagV);

    // previoused state vector
    Vector<Type> xPred = A * xPrev;

    // inovation
    Vector<Type> alpha = y - C * xPred;

    Matrix<Type> CTran = trT( C );
    Matrix<Type> VPred = A*V*trT(A) + Q;

    // Kalman gain matrix
    Matrix<Type> KGain = VPred*CTran * inv(C*VPred*CTran+R);

    V = ( eye(N,Type(1.0)) - KGain*C ) * VPred;

    // return the estimation of the state vector
    return xPred + KGain * alpha;
}

测试代码:

/*****************************************************************************
 *                                   kalman.h
 *
 * Kalman filter testing.
 *
 * Zhang Ming, 2010-10, Xi'an Jiaotong University.
 *****************************************************************************/


#define BOUNDS_CHECK

#include <iostream>
#include <kalman.h>


using namespace std;
using namespace splab;


typedef double  Type;
const   int     N = 2;
const   int     M = 2;
const   int     T = 20;


int main()
{
    Matrix<Type> A(N,N), C(M,N), Q(N,N), R(M,M);
    A = eye( N, Type(1.0) );    C = eye( N, Type(1.0) );
    Q = eye( N, Type(1.0) );    R = eye( N, Type(2.0) );

    Vector<Type> x(N,Type(1.0)), y(M), ytInit(M);
    ytInit[0] = Type(0.5);  ytInit[1] = Type(2.0);
    Matrix<Type> yt(M,T);
    for( int t=0; t<T; ++t )
        yt.setColumn( ytInit, t );

    Vector<Type> intV( N, Type(10.0) );
    for( int t=0; t<T; ++t )
    {
        y = yt.getColumn(t);
        x = kalman( A, C, Q, R, x, y, intV );
        cout << "Estimation of xt at the " << t << "th iteratin:   " << x << endl;
    }

    cout << "The theoretical xt should converge to:   " << ytInit << endl;

    return 0;
}

运行结果:

Estimation of xt at the 0th iteratin:   size: 2 by 1
0.576923
1.84615

Estimation of xt at the 1th iteratin:   size: 2 by 1
0.532787
1.93443

Estimation of xt at the 2th iteratin:   size: 2 by 1
0.51581
1.96838

Estimation of xt at the 3th iteratin:   size: 2 by 1
0.507835
1.98433

Estimation of xt at the 4th iteratin:   size: 2 by 1
0.503909
1.99218

Estimation of xt at the 5th iteratin:   size: 2 by 1
0.501953
1.99609

Estimation of xt at the 6th iteratin:   size: 2 by 1
0.500977
1.99805

Estimation of xt at the 7th iteratin:   size: 2 by 1
0.500488
1.99902

Estimation of xt at the 8th iteratin:   size: 2 by 1
0.500244
1.99951

Estimation of xt at the 9th iteratin:   size: 2 by 1
0.500122
1.99976

Estimation of xt at the 10th iteratin:   size: 2 by 1
0.500061
1.99988

Estimation of xt at the 11th iteratin:   size: 2 by 1
0.500031
1.99994

Estimation of xt at the 12th iteratin:   size: 2 by 1
0.500015
1.99997

Estimation of xt at the 13th iteratin:   size: 2 by 1
0.500008
1.99998

Estimation of xt at the 14th iteratin:   size: 2 by 1
0.500004
1.99999

Estimation of xt at the 15th iteratin:   size: 2 by 1
0.500002
2

Estimation of xt at the 16th iteratin:   size: 2 by 1
0.500001
2

Estimation of xt at the 17th iteratin:   size: 2 by 1
0.5
2

Estimation of xt at the 18th iteratin:   size: 2 by 1
0.5
2

Estimation of xt at the 19th iteratin:   size: 2 by 1
0.5
2

The theoretical xt should converge to:   size: 2 by 1
0.5
2


Process returned 0 (0x0)   execution time : 0.125 s
Press any key to continue.
 
 
 
 
  

卡尔曼滤波器 Kalman Filter

1人收藏此文章, 我要收藏发表于8个月前(2012-03-13 10:27) , 已有 120次阅读 共 0个评论
1. 卡尔曼滤波的应用 
卡尔曼滤波的一个典型实例是从一组有限的,包含噪声的,对物体位置的观察序列(可能有偏差)预测出物体的位置的  坐标及速度。例如,对于雷达来说,人们感兴趣的是其能够跟踪目标。但目标的位置、速度、加速度的测量值往往在任何时候都有噪声。卡尔曼滤波利用目标的动态信息,设法去掉噪声的影响,得到一个关于目标位置的好的  估计。这个估计可以是对当前目标位置的估计(滤波),也可以是对于将来位置的估计(预测),也可以是对过去位置的估计(插值或平滑)。 

2. 实例讲解 
假设我们要研究的对象是一个房间的温度。(1) 系统预测值。根据你的经验判断,这个房间的温度是恒定的,也就是下一分钟的温度等于现在这一分钟的温度(我们以一分钟为一个单位),且假设你的经验存在高斯白噪声(White Gaussian Noise)。(2) 测量值。我们在房间里放一个温度计,但是这个温度计也不准确的,测量值会比实际值偏差。我们也把这些偏差看成是高斯白噪声。 
现在我们要估算k时刻的实际温度值。因为你相信温度是恒定的,所以你会得到k时刻的温度预测值是跟k-1时刻一样的,假设是23度,同时该值的高斯噪声的偏差是5度(5是这样得到的:如果 k-1时刻估算出的最优温度值的偏差是3,你对自己预测的不确定度是4度,他们平方相加再开方,就是5)。然后,你从温度计那里得到了k时刻的温度值,假设是25度,同时该值的偏差是4度。 
由于我们用于估算k时刻的实际温度有两个温度值,分别是23度和25度。究竟实际温度是多少呢?相信自己还是相信温度计呢?究竟相信谁多一点,我 们可以用他们的covariance(协方差)来判断。因为Kg^2=5^2/(5^2+4^2),所以Kg=0.78(Kg:卡尔曼增益,Kalman Gain),我们可以估算出k时刻的实际温度值 是:23+0.78*(25-23)=24.56度。可以看出,因为温度计的covariance比较小(比较相信温度计),所以估算出的最优温度值偏向温度计的值。 
现在我们已经得到k时刻的最优温度值了,下一步就是要进入k+1时刻,进行新的最优估算。到现在为止,好像还没看到什么自回归的东西出现。对了,在进入 k+1时刻之前,我们还要算出k时刻那个最优值(24.56度)的偏差。算法如下:((1-Kg)*5^2)^0.5=2.35。这里的5就是上面的k时 刻你预测的那个23度温度值的偏差,得出的2.35就是进入k+1时刻以后k时刻估算出的最优温度值的偏差(对应于上面的3)。 
就是这样,卡尔曼滤波器就不断的把covariance递归,从而估算出最优的温度值。他运行的很快,而且它只保留了上一时刻的covariance。 

3. 数学描述 
首先,我们先要引入一个离散控制过程的系统。该系统可用一个线性随机微分方程(Linear Stochastic Difference equation)来描述: 
     X(k)=A X(k-1)+B U(k)+W(k) 
再加上系统的测量值: 
     Z(k)=H X(k)+V(k) 
上 两式子中,X(k)是k时刻的系统状态,U(k)是k时刻对系统的控制量。A和B是系统参数,对于多模型系统,他们为矩阵。Z(k)是k时刻的测量值,H 是测量系统的参数,对于多测量系统,H为矩阵。W(k)和V(k)分别表示过程和测量的噪声。他们被假设成高斯白噪声(White Gaussian Noise),他们的covariance 分别是Q,R(这里我们假设他们不随系统状态变化而变化)。 
首先我们要利用系统的过程模型,来预测下一状态的系统。假设现在的系统状态是k,根据系统的模型,可以基于系统的上一状态而预测出现在状态: 
     X(k|k-1)=A X(k-1|k-1)+B U(k) ……….. (1) 
式(1)中,X(k|k-1)是利用上一状态预测的结果,X(k-1|k-1)是上一状态最优的结果,U(k)为现在状态的控制量,如果没有控制量,它可以为0。 
到现在为止,我们的系统结果已经更新了,可是,对应于X(k|k-1)的covariance还没更新。我们用P表示covariance:
     P(k|k-1)=A P(k-1|k-1) A’+Q ……… (2) 
式 (2)中,P(k|k-1)是X(k|k-1)对应的covariance,P(k-1|k-1)是X(k-1|k-1)对应的 covariance,A’表示A的转置矩阵,Q是系统过程的covariance。式子1,2就是卡尔曼滤波器5个公式当中的前两个,也就是对系统的预 测。 
现在我们有了现在状态的预测结果,然后我们再收集现在状态的测量值。结合预测值和测量值,我们可以得到现在状态(k)的最优化估算值X(k|k): 
     X(k|k)= X(k|k-1)+Kg(k) (Z(k)-H X(k|k-1)) ……… (3) 
其中Kg为卡尔曼增益(Kalman Gain): 
     Kg(k)= P(k|k-1) H’ / (H P(k|k-1) H’ + R) ……… (4) 
到现在为止,我们已经得到了k状态下最优的估算值X(k|k)。但是为了要另卡尔曼滤波器不断的运行下去直到系统过程结束,我们还要更新k状态下X(k|k)的covariance: 
     P(k|k)=(I-Kg(k) H)P(k|k-1) ……… (5) 
其中I 为1的矩阵,对于单模型单测量,I=1。当系统进入k+1状态时,P(k|k)就是式子(2)的P(k-1|k-1)。这样,算法就可以自回归的运算下去。 
卡尔曼滤波器的原理基本描述了,式子1,2,3,4和5就是他的5 个基本公式。根据这5个公式,可以很容易的实现计算机的程序。 

4. 再述房间温度问题 
把房间看成一个系统,然后对这个系统建模。当然,我们见的模型不需要非常地精确。我们所知道的这个房间的温度是跟前一时刻的温度相同的,所以A=1。没有控制量,所以U(k)=0。因此得出: 
     X(k|k-1)=X(k-1|k-1) ……….. (6) 
式子(2)可以改成: 
     P(k|k-1)=P(k-1|k-1) +Q ……… (7) 
因为测量的值是温度计的,跟温度直接对应,所以H=1。式子3,4,5可以改成以下: 
     X(k|k)= X(k|k-1)+Kg(k) (Z(k)-X(k|k-1)) ……… (8) 
     Kg(k)= P(k|k-1) / (P(k|k-1) + R) ……… (9) 
     P(k|k)=(1-Kg(k))P(k|k-1) ……… (10) 
为了令卡尔曼滤波器开始工作,我们需要告诉卡尔曼两个零时刻的初始值,是X(0|0)和P(0|0)。他们的值不用太在意,随便给一个就可以了,因为随着 卡尔曼的工作,X会逐渐的收敛。但是对于P,一般不要取0,因为这样可能会令卡尔曼完全相信你给定的X(0|0)是系统最优的,从而使算法不能收敛。我选 了X(0|0)=1度,P(0|0)=10。 

引用: 
carpa.bokee.com/4725695.html 
http://zh.wikipedia.org/zh/%E5%8D%A1%E5%B0%94%E6%9B%BC%E6%BB%A4%E6%B3%A2 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值