apache log4j(3)-introduction(1)

Short introduction to log4j: Ceki Gülcü, March 2002

Copyright 2000-2002 The Apache Software Foundation. All rights reserved. This software is published under the terms of the Apache Software License version 2.0, a copy of which has been included in the LICENSE file shipped with the log4j distribution. This document is based on the article "Log4j delivers control over logging" published in November 2000 edition of JavaWorld. However, the present article contains more detailed and up to date information. The present short manual also borrows some text from "The complete log4j manual" by the same author (yours truly).

版权 2000-2002 Apache 软件基金会。保留所有权利。发布这个软件是根据Apache软件许可证2.0版,其副本已被列入许可证文件中的log4j发行附带的条款。这个文件是基于2000年10月发行的JavaWorld的文章"Log4j delivers control over logging" 。当前的文章包含更多细节和最新信息。这个简介手册也从"The complete log4j manual"借鉴了一些内容来自于同一个作者。

Abstract(摘要)

This document describes the log4j API, its unique features and design rationale. Log4j is an open source project based on the work of many authors. It allows the developer to control which log statements are output with arbitrary granularity. It is fully configurable at runtime using external configuration files. Best of all, log4j has a gentle learning curve. Beware: judging from user feedback, it is also quite addictive.
这个文档描述了 log4j API,它独特的功能和设计原理。Log4j 是一个基于很多很多开源工作者的开源项目。它允许开发者控制日志报表的输出级别。它可以在运行期间使用外部文件配置的。最重要的是,log4j 有一个平缓的学习曲线。请注意:从用户的反馈来看,它也很容易上瘾。

Introduction

Almost every large application includes its own logging or tracing API. In conformance with this rule, the E.U. SEMPER project decided to write its own tracing API. This was in early 1996. After countless enhancements, several incarnations and much work that API has evolved to become log4j, a popular logging package for Java. The package is distributed under the Apache Software License, a fully-fledged open source license certified by the open source initiative. The latest log4j version, including full-source code, class files and documentation can be found at http://logging.apache.org/log4j/. By the way, log4j has been ported to the C, C++, C#, Perl, Python, Ruby, and Eiffel languages.
Inserting log statements into code is a low-tech method for debugging it. It may also be the only way because debuggers are not always available or applicable. This is usually the case for multithreaded applications and distributed applications at large.
Experience indicates that logging was an important component of the development cycle. It offers several advantages. It provides precise context about a run of the application. Once inserted into the code, the generation of logging output requires no human intervention. Moreover, log output can be saved in persistent medium to be studied at a later time. In addition to its use in the development cycle, a sufficiently rich logging package can also be viewed as an auditing tool.
As Brian W. Kernighan and Rob Pike put it in their truly excellent book "The Practice of Programming"

  As personal choice, we tend not to use debuggers beyond getting a stack trace or the value of a variable or two. One reason is that it is easy to get lost in details of complicated data structures and control flow; we find stepping through a program less productive than thinking harder and adding output statements and self-checking code at critical places. Clicking over statements takes longer than scanning the output of judiciously-placed displays. It takes less time to decide where to put print statements than to single-step to the critical section of code, even assuming we know where that is. More important, debugging statements stay with the program;debugging sessions are transient.
Logging does have its drawbacks. It can slow down an application. If too verbose, it can cause scrolling blindness. To alleviate these concerns, log4j is designed to be reliable, fast and extensible. Since logging is rarely the main focus of an application, the log4j API strives to be simple to understand and to use.

Loggers, Appenders and Layouts

Log4j has three main components: loggers, appenders and layouts. These three types of components work together to enable developers to log messages according to message type and level, and to control at runtime how these messages are formatted and where they are reported.

Logger hierarchy

The first and foremost advantage of any logging API over plain System.out.println resides in its ability to disable certain log statements while allowing others to print unhindered. This capability assumes that the logging space, that is, the space of all possible logging statements, is categorized according to some developer-chosen criteria. This observation had previously led us to choose category as the central concept of the package. However, since log4j version 1.2, Logger class has replaced the Category class. For those familiar with earlier versions of log4j, the Logger class can be considered as a mere alias to the Category class.
Loggers are named entities. Logger names are case-sensitive and they follow the hierarchical naming rule:
Named Hierarchy
A logger is said to be an ancestor of another logger if its name followed by a dot is a prefix of the descendant logger name. A logger is said to be a parent of a child logger if there are no ancestors between itself and the descendant logger.
For example, the logger named "com.foo" is a parent of the logger named "com.foo.Bar". Similarly, "java" is a parent of "java.util" and an ancestor of "java.util.Vector". This naming scheme should be familiar to most developers.

The root logger resides at the top of the logger hierarchy. It is exceptional in two ways:
it always exists,
it cannot be retrieved by name.
Invoking the class static Logger.getRootLogger method retrieves it. All other loggers are instantiated and retrieved with the class static Logger.getLogger method. This method takes the name of the desired logger as a parameter. Some of the basic methods in the Logger class are listed below.
  package org.apache.log4j;

  public class Logger {

    // Creation & retrieval methods:
    public static Logger getRootLogger();
    public static Logger getLogger(String name);

    // printing methods:
    public void trace(Object message);
    public void debug(Object message);
    public void info(Object message);
    public void warn(Object message);
    public void error(Object message);
    public void fatal(Object message);

    // generic printing method:
    public void log(Level l, Object message);
}
Loggers may be assigned levels. The set of possible levels, that is:


TRACE,
DEBUG,
INFO,
WARN,
ERROR and
FATAL
are defined in the org.apache.log4j.Level class. Although we do not encourage you to do so, you may define your own levels by sub-classing the Level class. A perhaps better approach will be explained later on.
If a given logger is not assigned a level, then it inherits one from its closest ancestor with an assigned level. More formally:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值