518. Coin Change 2

本文介绍了一个计算特定金额下不同硬币组合数量的问题。通过动态规划的方法,使用一维数组记录每种金额的组合数,并逐步更新数组以得到最终答案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

You are given coins of different denominations and a total amount of money. Write a function to compute the number of combinations that make up that amount. You may assume that you have infinite number of each kind of coin.

Note: You can assume that

0 <= amount <= 5000
1 <= coin <= 5000
the number of coins is less than 500
the answer is guaranteed to fit into signed 32-bit integer
Example 1:

Input: amount = 5, coins = [1, 2, 5]
Output: 4
Explanation: there are four ways to make up the amount:
5=5
5=2+2+1
5=2+1+1+1
5=1+1+1+1+1
Example 2:

Input: amount = 3, coins = [2]
Output: 0
Explanation: the amount of 3 cannot be made up just with coins of 2.
Example 3:

Input: amount = 10, coins = [10]
Output: 1

代码解析:动态规划;构造一个一维数组dp[amount+1]用来记录小于等于amount的每一个整数的构成种类数.逐一遍历coin[n]中的数c=coin[j],dp[i] += dp[i-c]:意思就是如果c存在于coin[n]中那么构成i的种类就等于构成i-c的种类加上原来构成i的种类


public class Solution {

    public static void main(String[] args) {
        // TODO Auto-generated method stub
int[] coins = {1,2,5};
System.out.println(change(5, coins));
    }
    public static  int change(int amount, int[] coins) {
        int[] dp = new int[amount+1];
        dp[0] = 1;
        for(int j = 0;j<coins.length;j++){
            int c = coins[j];
            for(int i = c;i<amount+1;i++){
                dp[i] += dp[i-c];
            }
        }

        return dp[amount];

    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值