证明:I类错误在边界点取到最大值

这篇博客讨论了在一维参数空间中,对于单侧检验,最大一类错误(第一类错误)发生在参数边界的情况。错误的证明通过不正确的T_n定义和混淆了变量与常数,导致结论错误。正确的证明则展示了当参数等于边界值时,错误率达到最大,并且当参数大于边界值时,错误率趋近于0。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题描述:

X1,X2,...,Xn∼i.i.dPois(λ),λ>0X_1, X_2, ..., X_n \overset{i.i.d}{\sim} Pois(\lambda), \lambda > 0X1,X2,...,Xni.i.dPois(λ),λ>0 for some unknown λ\lambdaλ

H0:λ≥λ0,H1:λ<λ0,λ0>0H_0: \lambda \ge \lambda_0, H_1: \lambda \lt \lambda_0, \lambda_0 > 0H0:λλ0,H1:λ<λ0,λ0>0

theorem: the maximum of the type 1 error is achieved at the boundary of Θ0 and Θ1\Theta_0\ and\ \Theta_1Θ0 and Θ1 for a one-sided tests, where the parameter space is 1-dimensional.

the wrong proof:

αλ=Pλ∈Θ0(ψ=1)where,ψ=I(Tn<−qα),with level α\alpha_\lambda = P_{\lambda \in \Theta_0}(\psi = 1) \\ where, \psi = \mathbb{I}(T_n < -q_\alpha), with\ level\ \alphaαλ=PλΘ0(ψ=1)where,ψ=I(Tn<qα),with level α

on this question, let Tn=nXnˉ−λλT_n=\sqrt{n} \frac{\bar{X_n}-\lambda}{\sqrt{\lambda}}Tn=nλXnˉλ

then, αλ=Pλ∈Θ0(Tn<−qα)=Pλ≥λ0(nXnˉ−λλ<q−α)=Pλ≥λ0(nXnˉ−λλ<−qα)\alpha_{\lambda} = P_{\lambda \in \Theta_0}(T_n < -q_{\alpha}) = P_{\lambda \ge \lambda_0}(\sqrt{n} \frac{\bar{X_n}-\lambda}{\sqrt{\lambda}} < q_{-\alpha}) = P_{\lambda \ge \lambda_0}(\sqrt{n} \frac{\bar{X_n}-\lambda}{\sqrt{\lambda}} < -q_{\alpha})αλ=PλΘ0(Tn<qα)=Pλλ0(nλXnˉλ<qα)=Pλλ0(nλXnˉλ<qα)

let Tn,λ=nXnˉ−λλT_{n, \lambda}= \sqrt{n} \frac{\bar{X_n}-\lambda}{\sqrt{\lambda}}Tn,λ=nλXnˉλ and Tn,λ0=nXnˉ−λ0λ0T_{n, \lambda_0}= \sqrt{n} \frac{\bar{X_n}-\lambda_0}{\sqrt{\lambda_0}}Tn,λ0=nλ0Xnˉλ0

when λ≥λ0\lambda \ge \lambda_0λλ0, we have:

λ≥λ0⇒ −λ≤−λ0⇒ Xnˉ−λ≤Xnˉ−λ0⇒Xnˉ−λλ0≤Xnˉ−λ0λ0⇒Xnˉ−λλ0≤Xnˉ−λλ≤Xnˉ−λ0λ0⇒Tn,λ≤Tn,λ0\lambda \ge \lambda_0 \\ \Rightarrow\ -\lambda \le -\lambda_0 \\ \Rightarrow\ \bar{X_n} - \lambda \le \bar{X_n} - \lambda_0 \\ \Rightarrow \frac{\bar{X_n}-\lambda}{\lambda_0} \le \frac{\bar{X_n}-\lambda_0}{\lambda_0} \\ \Rightarrow \frac{\bar{X_n}-\lambda}{\lambda_0} \le\frac{\bar{X_n}-\lambda}{\lambda} \le \frac{\bar{X_n}-\lambda_0}{\lambda_0} \\ \Rightarrow T_{n, \lambda} \le T_{n, \lambda_0}λλ0 λλ0 XnˉλXnˉλ0λ0Xnˉλλ0Xnˉλ0λ0XnˉλλXnˉλλ0Xnˉλ0Tn,λTn,λ0

let event A:Tn,λ<−qaA : T_{n,\lambda} \lt -q_aA:Tn,λ<qa and B:Tn,λ0<−qaB : T_{n,\lambda_0} \lt -q_aB:Tn,λ0<qa,
B⊆A⇔P(B)≤P(A)⇔P(Tn,λ0<−qa)≤P(Tn,λ<−qa)B \subseteq A \Leftrightarrow P(B) \le P(A) \Leftrightarrow P(T_{n,\lambda_0} \lt -q_a) \le P(T_{n,\lambda} \lt -q_a)BAP(B)P(A)P(Tn,λ0<qa)P(Tn,λ<qa)

which means: the minimum of the type 1 error is achieved at the boundary of Θ0\Theta_0Θ0

what’s the problem in this proof? --hint, the wrong TnT_nTn and the confusion of variable and constant.

the correct proof:

αλ=Pλ∈Θ0(ψ=1)where,ψ=I(Tn<−qα),with level α\alpha_\lambda = P_{\lambda \in \Theta_0}(\psi = 1) \\ where, \psi = \mathbb{I}(T_n < -q_\alpha), with\ level\ \alphaαλ=PλΘ0(ψ=1)where,ψ=I(Tn<qα),with level α

on this question, let Tn=nXnˉ−λ0λ0T_n=\sqrt{n} \frac{\bar{X_n}-\lambda_0}{\sqrt{\lambda_0}}Tn=nλ0Xnˉλ0

then, αλ=Pλ∈Θ0(Tn<−qα)=Pλ≥λ0(nXnˉ−λ0λ0<q−α)=Pλ≥λ0(nXnˉ−λλ<−qα)\alpha_{\lambda} = P_{\lambda \in \Theta_0}(T_n < -q_{\alpha}) = P_{\lambda \ge \lambda_0}(\sqrt{n} \frac{\bar{X_n}-\lambda_0}{\sqrt{\lambda_0}} < q_{-\alpha}) = P_{\lambda \ge \lambda_0}(\sqrt{n} \frac{\bar{X_n}-\lambda}{\sqrt{\lambda}} < -q_{\alpha})αλ=PλΘ0(Tn<qα)=Pλλ0(nλ0Xnˉλ0<qα)=Pλλ0(nλXnˉλ<qα)

let Tn,λ0=nXnˉ−λ0λ0T_{n, \lambda_0}= \sqrt{n} \frac{\bar{X_n}-\lambda_0}{\sqrt{\lambda_0}}Tn,λ0=nλ0Xnˉλ0

when λ=λ0\lambda = \lambda_0λ=λ0 we have:

Xnˉ⟶Pλ0\bar{X_n}\overset{\mathbb{P}}{\longrightarrow} \lambda_0XnˉPλ0, then

Tn,λ0⟶dN(0,1)T_{n, \lambda_0} \overset{d}{\longrightarrow} N(0,1)Tn,λ0dN(0,1), because of CLT

αλ=Pλ=λ0(nXnˉ−λ0λ0<−qα)=Φ(−qα)=1−Φ(qα)\alpha_{\lambda} = P_{\lambda = \lambda_0}(\sqrt{n} \frac{\bar{X_n}-\lambda_0}{\sqrt{\lambda_0}} < -q_{\alpha}) = \Phi(-q_{\alpha}) = 1 - \Phi(q_{\alpha})αλ=Pλ=λ0(nλ0Xnˉλ0<qα)=Φ(qα)=1Φ(qα)

when λ>λ0\lambda \gt \lambda_0λ>λ0, we have:

Xnˉ⟶Pλ\bar{X_n}\overset{\mathbb{P}}{\longrightarrow} \lambdaXnˉPλ, then by continuous mapping theorem

Tn,λ0⟶Pnλ−λ0λ0⟶Pn→∞+∞T_{n, \lambda_0} \overset{\mathbb{P}}{\longrightarrow} \sqrt{n} \frac{\lambda-\lambda_0}{\sqrt{\lambda_0}} \underset{n\to\infty}{\overset{\mathbb{P}}{\longrightarrow}} +\inftyTn,λ0Pnλ0λλ0nP+, therefore,

αλ=Pλ>λ0(nXnˉ−λ0λ0<−qα)⟶PPλ>λ0(nλ−λ0λ0<−qα)⟶PPλ>λ0(+∞<−qα)→0\alpha_{\lambda} = P_{\lambda > \lambda_0}(\sqrt{n} \frac{\bar{X_n}-\lambda_0}{\sqrt{\lambda_0}} < -q_{\alpha}) \\ \overset{\mathbb{P}}{\longrightarrow} P_{\lambda > \lambda_0}(\sqrt{n} \frac{\lambda-\lambda_0}{\sqrt{\lambda_0}} < -q_{\alpha}) \\ \overset{\mathbb{P}}{\longrightarrow} P_{\lambda > \lambda_0}(+\infty < -q_{\alpha}) \rightarrow 0αλ=Pλ>λ0(nλ0Xnˉλ0<qα)PPλ>λ0(nλ0λλ0<qα)PPλ>λ0(+<qα)0

thus, the maximum of αλ\alpha_{\lambda}αλ is achieved at λ=λ0\lambda = \lambda_0λ=λ0, which is the boundary of Θ0\Theta_0Θ0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值