封装合并函数 arr_merge

本文探讨了PHP中数组合并的基本用法及自定义数组合并函数的实现,通过实例展示了如何使用array_merge函数和自定义函数来合并多个数组。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

<?php
$arr1 = array(1,2,3);
	 $arr2 = array(4,5,6);
	 $arr3 = array(7,8,9);
	 $com = array_merge($arr1,$arr2,$arr3);
	 //echo "<pre>";
	 //var_dump($com);
	 //echo "</pre>";
	 
	 //自定义一个函数 实现arr_merge功能;
	 function arr_merge(){
		 //1.接受所有的实际参数
		 $args  = func_get_args();
		 
         //2.遍历这个实际参数的数组
		 foreach ($args as $arg){

			  //3.判断每一个参数类型是不是数组 
              if(!is_array($arg)){
				  return false;
			  }
			  	 //4.如果是数组遍历该数组  将该数组的键和值都拿出来 存入在新的数组当中
				 foreach ($arg as $val){
					 $new_arr[] = $val;
				 }
		 }
		 return $new_arr;
         //5.返回这个新的数组		 
	 }

	 $arr4 = array(a,b,c);
	 echo "<pre>";
	 var_dump(arr_merge($arr1,$arr2,$arr3,$arr4));
	 echo "</pre>";


                                 学到两个函数:
                                            func_num_args 获取实际参数的个数
                                            func_get_arg  获取某一个的实际参数值
	 
?>

在for  foreach循环遍历自身很弱 学习中很头大 不知道自己是否在成长还是在衰弱 ;

首先抛开代码 去想逻辑 双foreach的嵌套 很迷茫 感觉自己写不出 只有一点点的去想逻辑 一行行去写注释 。

import tkinter as tk from tkinter import ttk, filedialog, messagebox from PIL import Image, ImageTk, ImageSequence import pandas as pd import time import os import random import threading import queue from bubble import Bubble from selection import Selection from insertion import Insertion from shellsort import Shell from cocktailsort import Cocktail from gnomesort import Gnome from combsort import Comb from countingsort import Counting from radixsort import Radix from bucketsort import Bucket from timsort import Tim from heapsort import Heap from quicksort import Quick from mergesort import Merge window = tk.Tk() window.title("排序方法") window.geometry("1200x800+300+100") # 全局变量声明 current_file = "" arr = [] filename = "sort.csv" gif_label = None gif_frames = [] gif_index = 0 gif_speed = 150 gif_after_id = None scroll_after_id = None BATCH_SIZE = 10000 display_queue = queue.Queue() is_displaying = False sorting_thread = None sorting_active = False def load_gif(file_path, size=(400, 300)): # 加载gif global gif_frames, gif_index # 声明全局变量 gif_frames = [] try: img = Image.open(file_path) for frame in ImageSequence.Iterator(img): resized = frame.copy().resize(size, Image.Resampling.LANCZOS) gif_frames.append(ImageTk.PhotoImage(resized)) gif_index = 0 return bool(gif_frames) except Exception as e: print(f"加载 GIF 出错: {e}") return False def animate_gif(): # 循环显示gif的每一帧 global gif_index, gif_after_id if gif_frames: gif_label.config(image=gif_frames[gif_index]) gif_index = (gif_index + 1) % len(gif_frames) gif_after_id = window.after(gif_speed, animate_gif) def update_gif(file_path): global gif_after_id, gif_frames, gif_index if gif_after_id: window.after_cancel(gif_after_id) if load_gif(file_path, size=(500, 300)): animate_gif() else: gif_label.config(text=f"GIF 加载失败: {file_path}") def load_file(): file_path = filedialog.askopenfilename( title="选择数据文件", filetypes=[("CSV文件", "*.csv"), ("文本文件", "*.txt"), ("所有文件", "*.*")] ) if file_path: status_label.config(text=f"正在加载文件: {os.path.basename(file_path)}...") window.update() threading.Thread(target=load_data_thread, args=(file_path), daemon=True).start() def load_data_thread(file_path): global arr, current_file # 声明全局变量 try: # 分块读取大文件 chunks = [] total_size = os.path.getsize(file_path) processed = 0 for chunk in pd.read_csv(file_path, chunksize=10000): chunks.append(chunk) processed += chunk.memory_usage(index=True, deep=True).sum() progress_value = min(processed / total_size * 100, 100) window.after(0, update_progress, progress_value, f"加载中: {progress_value:.1f}% ({processed / 1e6:.2f}MB/{total_size / 1e6:.2f}MB)") df = pd.concat(chunks) arr = df.values.flatten().tolist() current_file = os.path.basename(file_path) # 更新UI window.after(0, update_treeview_batch, unsort_tree, arr) window.after(0, update_treeview, sort_tree, []) window.after(0, lambda: status_label.config( text=f"已加载: {len(arr)} 条数据 | 文件: {current_file}")) window.after(0, lambda: progress.configure(value=0)) except Exception as e: window.after(0, lambda: messagebox.showerror("错误", f"加载文件失败: {str(e)}")) window.after(0, lambda: status_label.config(text=f"加载失败: {str(e)}")) def update_treeview(treeview, data): treeview.delete(*treeview.get_children()) for value in data: treeview.insert("", "end", values=(value,)) def update_treeview_batch(treeview, data): """分批更新Treeview控件""" treeview.delete(*treeview.get_children()) total = len(data) def add_batch(start_idx=0): end_idx = min(start_idx + BATCH_SIZE, total) for i in range(start_idx, end_idx): treeview.insert("", "end", values=(data[i],)) # 更新进度 progress_value = end_idx / total * 100 window.after(0, lambda: progress.configure(value=progress_value)) if end_idx < total: # 使用计时器安排下一批处理 treeview.after(1, add_batch, end_idx) else: treeview.yview_moveto(1.0) add_batch(0) def scroll_sorted_data(treeview, data): """分批滚动显示排序结果""" global scroll_after_id if scroll_after_id: window.after_cancel(scroll_after_id) treeview.delete(*treeview.get_children()) total = len(data) progress.configure(value=0) def scroll(index=0): # 一次插入一批数据 batch_size = min(BATCH_SIZE, total - index) for i in range(index, index + batch_size): treeview.insert("", "end", values=(data[i],)) # 滚动到底部 treeview.yview_moveto(1.0) # 更新进度 progress_value = (index + batch_size) / total * 100 window.after(0, lambda: progress.configure(value=progress_value)) if index + batch_size < total: # 使用计时器安排下一批显示 scroll_after_id = treeview.after(1, scroll, index + batch_size) else: scroll_after_id = None scroll(0) def generate_random_data(): global arr try: count = int(entry.get()) if count < 100: messagebox.showerror("错误", "请输入100以上的数字") return # 清空现有数组 arr = [] # 更新状态 status_label.config(text=f"正在生成 {count} 条随机数据...") window.update() # 启动线程生成数据 threading.Thread(target=generate_data_thread, args=(count,), daemon=True).start() except ValueError: messagebox.showerror("错误", "请输入有效的数字") def generate_data_thread(count): global arr, current_file, stop_sorting arr = [] # 确保数组为空 stop_sorting = False # 分批生成数据 for i in range(0, count, BATCH_SIZE): batch_size = min(BATCH_SIZE, count - len(arr)) batch = [] for _ in range(batch_size): rand_type = random.choice(["int", "float"]) # 控制整数和浮点数的比例 if len(arr) < count * 0.7: # 70% 整数 batch.append(random.randint(-100000, 100000)) else: batch.append(round(random.uniform(-100000, 100000), 3)) arr.extend(batch) # 更新进度 progress_value = len(arr) / count * 100 window.after(0, lambda: update_progress(progress_value, f"生成进度: {progress_value:.1f}% ({len(arr)}/{count})")) # 保存数据 current_file = "random_data.csv" pd.DataFrame(arr).to_csv(current_file, index=False) # 更新UI window.after(0, lambda: update_treeview_batch(unsort_tree, arr)) window.after(0, lambda: update_treeview(sort_tree, [])) window.after(0, lambda: status_label.config( text=f"已生成 {len(arr)} 条随机数据并保存")) window.after(0, lambda: progress.configure(value=0)) def start_sorting(): global sorting_active # 声明全局变量 if not arr: messagebox.showwarning("警告", "没有数据可排序") return if sorting_active: messagebox.showwarning("警告", "排序正在进行中") return # 更新状态 sorting_active = True algorithm = var.get() algorithm_name = { "bubblesort": "冒泡排序", "selectionsort": "选择排序", "insertionsort": "插入排序", "quicksort": "快速排序", "mergesort": "归并排序", "shellsort": "希尔排序", "cocktailsort": "鸡尾酒排序", "gnomesort": "侏儒排序", "combsort": "梳排序", "countingsort": "计数排序", "radixsort": "基数排序", "bucketsort": "桶排序", "timsort": "Tim排序", "heapsort": "堆排序" }.get(algorithm, algorithm) time_label.config(text="排序耗时: 计算中...") steps_label.config(text="运算步数: 计算中...") result_label.config(text="结果文件: 处理中...") status_label.config(text=f"正在使用 {algorithm_name} 排序数据...") progress.configure(value=0) window.update() # 创建新线程运行排序算法 sorting_thread = threading.Thread(target=choose, daemon=True) sorting_thread.start() def choose(): global sorting_active # 声明全局变量 arr_copy = arr.copy() start_time = time.time() algorithm = var.get() sorted_arr, steps = None, 0 title = "" try: if algorithm == "bubblesort": sorter = Bubble() sorted_arr, steps = sorter.sort(arr_copy) title = "冒泡排序" elif algorithm == "selectionsort": sorter = Selection() sorted_arr, steps = sorter.sort(arr_copy) title = "选择排序" elif algorithm == "insertionsort": sorter = Insertion() sorted_arr, steps = sorter.sort(arr_copy) title = "插入排序" elif algorithm == "quicksort": sorter = Quick() sorted_arr, steps = sorter.sort(arr_copy) title = "快速排序" elif algorithm == "mergesort": sorter = Merge() sorted_arr, steps = sorter.sort(arr_copy) title = "归并排序" elif algorithm == "shellsort": sorter = Shell() sorted_arr, steps = sorter.sort(arr_copy) title = "希尔排序" elif algorithm == "cocktailsort": sorter = Cocktail() sorted_arr, steps = sorter.sort(arr_copy) title = "鸡尾酒排序" elif algorithm == "gnomesort": sorter = Gnome() sorted_arr, steps = sorter.sort(arr_copy) title = "侏儒排序" elif algorithm == "combsort": sorter = Comb() sorted_arr, steps = sorter.sort(arr_copy) title = "梳排序" elif algorithm == "countingsort": sorter = Counting() sorted_arr, steps = sorter.sort(arr_copy) title = "计数排序" elif algorithm == "radixsort": sorter = Radix() sorted_arr, steps = sorter.sort(arr_copy) title = "基数排序" elif algorithm == "bucketsort": sorter = Bucket() sorted_arr, steps = sorter.sort(arr_copy) title = "桶排序" elif algorithm == "timsort": sorter = Tim() sorted_arr, steps = sorter.sort(arr_copy) title = "Tim排序" elif algorithm == "heapsort": sorter = Heap() sorted_arr, steps = sorter.sort(arr_copy) title = "堆排序" else: sorter = Bubble() sorted_arr, steps = sorter.sort(arr_copy) title = "冒泡排序" elapsed_time = time.time() - start_time # 保存结果 with open(filename, "a", encoding="utf-8") as f: # 使用"w"模式覆盖旧文件 f.write(f"\n{title}\n") f.write("\n".join(map(str, sorted_arr))) # 更新UI window.after(0, lambda: scroll_sorted_data(sort_tree, sorted_arr)) window.after(0, lambda: time_label.config( text=f"排序耗时: {elapsed_time:.4f} 秒")) window.after(0, lambda: steps_label.config( text=f"运算步数: {steps}")) window.after(0, lambda: result_label.config( text=f"结果文件: {os.path.abspath(filename)}")) window.after(0, lambda: status_label.config( text=f"{title} 完成! 已处理 {len(arr)} 条数据")) except Exception as e: window.after(0, lambda: messagebox.showerror("排序错误", f"排序过程中出错: {str(e)}")) window.after(0, lambda: status_label.config( text=f"排序失败: {str(e)}")) finally: sorting_active = False progress.configure(value=100) def stop_processing(): stop_sorting = True status_label.config(text="正在停止当前操作...") def on_combobox_select(event=None): algorithm = var.get() gif_map = { "bubblesort": "bubble.gif", "selectionsort": "sele.gif", "insertionsort": "inster.gif", "quicksort": "quick.gif", "mergesort": "merge.gif", "shellsort":"shell.gif", "cocktailsort": "cocktail.gif", "gnomesort": "gnome.gif", "combsort": "comb.gif", "countingsort": "counting.gif", "radixsort": "radix.gif", "bucketsort": "bucket.gif", "timsort": "tim.gif", "heapsort": "heap.gif" } gif_path = gif_map.get(algorithm, "sorting.gif") update_gif(gif_path) # 重置排序结果显示 update_treeview(sort_tree, []) time_label.config(text="排序耗时: --") steps_label.config(text="运算步数: --") result_label.config(text="结果文件: --") def open_file(): file_path = os.path.abspath(filename) if os.path.exists(file_path): os.startfile(file_path) # Windows else: messagebox.showinfo("信息", "结果文件尚未生成") def reset(): global stop_sorting, arr, current_file # 声明全局变量 stop_sorting = True update_treeview(sort_tree, []) time_label.config(text="排序耗时: --") steps_label.config(text="运算步数: --") result_label.config(text="结果文件: --") progress.configure(value=0) status_label.config(text="已重置应用程序") def update_progress(value, text): progress.configure(value=value) status_label.config(text=text) # 创建UI组件 optuple = ("bubblesort", "selectionsort", "insertionsort", "shellsort", "cocktailsort", "gnomesort", "combsort", "countingsort", "radixsort","bucketsort","timsort","heapsort","quicksort","mergesort") var = tk.StringVar(value=optuple[0]) control_frame = ttk.Frame(window) control_frame.pack(fill=tk.X, padx=10, pady=10) ttk.Label(control_frame, text="选择排序算法:").grid(row=0, column=0, padx=5, pady=5) cb = ttk.Combobox(control_frame, textvariable=var, values=optuple, state="readonly", width=15) cb.grid(row=0, column=1, padx=5, pady=5) cb.bind("<<ComboboxSelected>>", on_combobox_select) ttk.Label(control_frame, text="生成数据量:").grid(row=0, column=2, padx=5, pady=5) entry = ttk.Entry(control_frame, width=10) entry.grid(row=0, column=3, padx=5, pady=5) ttk.Button(control_frame, text="生成随机数据", command=generate_random_data).grid(row=0, column=4, padx=5, pady=5) ttk.Button(control_frame, text="选择数据文件", command=load_file).grid(row=0, column=5, padx=5, pady=5) ttk.Button(control_frame, text="开始排序", command=start_sorting).grid(row=0, column=6, padx=5, pady=5) ttk.Button(control_frame, text="停止排序").grid(row=0, column=7, padx=5, pady=5) # 数据展示区域 data_frame = ttk.Frame(window) data_frame.pack(fill="both", expand=True, padx=10, pady=5) # 未排序数据 unsort_frame = ttk.LabelFrame(data_frame, text="未排序数据") unsort_frame.pack(side=tk.LEFT, fill=tk.BOTH, expand=True, padx=5, pady=5) unsort_tree = ttk.Treeview(unsort_frame, columns=("value",), show="headings", height=15) unsort_tree.heading("value", text="数值") unsort_tree.column("value", width=100) unsort_tree.pack(side=tk.LEFT, fill=tk.BOTH, expand=True) unsort_scrollbar = ttk.Scrollbar(unsort_frame, orient=tk.VERTICAL, command=unsort_tree.yview) unsort_scrollbar.pack(side=tk.RIGHT, fill=tk.Y) unsort_tree.configure(yscrollcommand=unsort_scrollbar.set) # 排序后数据 sort_frame = ttk.LabelFrame(data_frame, text="排序后数据") sort_frame.pack(side=tk.RIGHT, fill=tk.BOTH, expand=True, padx=5, pady=5) sort_tree = ttk.Treeview(sort_frame, columns=("value",), show="headings", height=15) sort_tree.heading("value", text="数值") sort_tree.column("value", width=100) sort_tree.pack(side=tk.LEFT, fill=tk.BOTH, expand=True) # 添加pack sort_scrollbar = ttk.Scrollbar(sort_frame, orient=tk.VERTICAL, command=sort_tree.yview) sort_scrollbar.pack(side=tk.RIGHT, fill=tk.Y) sort_tree.configure(yscrollcommand=sort_scrollbar.set) gif_frame = ttk.Frame(window) gif_frame.pack(fill=tk.X, padx=10, pady=5) gif_label = ttk.Label(gif_frame) gif_label.pack() # 状态信息 status_frame = ttk.Frame(window) status_frame.pack(fill=tk.X, padx=10, pady=5) time_label = ttk.Label(status_frame, text="排序耗时: --") time_label.grid(row=0, column=0, padx=10, pady=5, sticky="w") steps_label = ttk.Label(status_frame, text="运算步数: --") steps_label.grid(row=0, column=1, padx=10, pady=5, sticky="w") result_label = ttk.Label(status_frame, text="结果文件: --") result_label.grid(row=0, column=2, padx=10, pady=5, sticky="w") progress = ttk.Progressbar(status_frame, orient=tk.HORIZONTAL, length=200, mode='determinate') progress.grid(row=0, column=3, padx=10, pady=5) status_label = ttk.Label(status_frame, text="就绪", foreground="blue") status_label.grid(row=0, column=4, padx=10, pady=5, sticky="ew") # 操作按钮 button_frame = ttk.Frame(window) button_frame.pack(fill=tk.X, padx=10, pady=10) ttk.Button(button_frame, text="查看结果文件", command=open_file).pack(side=tk.RIGHT, padx=5) ttk.Button(button_frame, text="重置", command=reset).pack(side=tk.RIGHT, padx=5) # 初始加载示例数据 update_gif("bubble.gif") window.mainloop() 在这个ui里添加了停止按钮,帮我定义停止按钮的程式,利用泡泡排序的flog停止
06-21
import tkinter as tk from tkinter import * # 导入GUI库的基础模块 from tkinter import ttk,filedialog,messagebox # 导入更漂亮的控件样式 from bubble import Bubble # 自定义的冒泡排序类 from selection import Selection from insertion import Insertion from shellsort import Shell import pandas as pd # 数据处理库,用于读取CSV import time # 计时功能 import os # 操作系统功能,用于获取文件路径 import random from PIL import Image, ImageTk, ImageSequence import threading window = Tk() window.title("排序方法") window.geometry("1200x800+300+100") # 设置窗口大小和位置(宽x高+X坐标+Y坐标) current_file = "" arr = [] filename ="sort.csv" BATCH_SIZE = 10000 gif_frame = [] gif_index = 0 gif_speed = 200 gif_after = None gif_label = None # 全局变量 def load_gif(file_path,size=(400,300)): global gif_frame,gif_index gif_frame =[] img = Image.open(file_path) for frame in ImageSequence.Iterator(img): resized = frame.copy().resize(size, Image.Resampling.BILINEAR) gif_frame.append(ImageTk.PhotoImage(resized)) gif_index = 0 return bool(gif_frame) def open_gif(): global gif_index,gif_after if gif_frame: gif_label.config(image=gif_frame[gif_index]) gif_index = (gif_index + 1) % len(gif_frame) gif_after = window.after(gif_speed,open_gif) def update_gif(file_path): global gif_after, gif_frame, gif_index if gif_after: window.after_cancel(gif_after) if load_gif(file_path, size=(500, 300)): open_gif() else: gif_label.config(text=f"GIF 加载失败: {file_path}") def load_data(file_path): # 加载CSV文件数据 global arr, current_file # global 全局变量用的函式,不然改不了 chunks = [] total_size = os.path.getsize(file_path) processed = 0 for chunk in pd.read_csv(file_path, chunksize=2000): chunks.append(chunk) processed += chunk.memory_usage(index=True, deep=True).sum() progress_value = min(processed / total_size * 100, 100) if os.path.exists(file_path): df = pd.concat(chunks) arr = df.values.flatten().tolist() current_file = os.path.basename(file_path) update_treeview(unsort_tree, arr) update_treeview(sort_tree, []) def update_treeview(treeview, data): treeview.delete(*treeview.get_children()) for value in data: treeview.insert("", "end", values=(value)) def update_treeview_batch(treeview, data): """分批更新Treeview控件""" treeview.delete(*treeview.get_children()) total = len(data) def add_batch(start_idx=0): end_idx = min(start_idx + BATCH_SIZE, total) for i in range(start_idx, end_idx): treeview.insert("", "end", values=(data[i],)) if end_idx < total: # 使用计时器安排下一批处理 treeview.after(1, add_batch, end_idx) else: treeview.yview_moveto(1.0) def generate_random_data(): global arr try: count = int(entry.get()) if count < 100: messagebox.showerror("错误", "请输入100以上的数字") return # 清空现有数组 arr = [] # 启动线程生成数据 threading.Thread(target=generate_data_thread, args=(count,), daemon=True).start() except ValueError: messagebox.showerror("错误", "请输入有效的数字") def generate_data_thread(count): global arr, current_file, stop_sorting arr = [] # 确保数组为空 stop_sorting = False # 分批生成数据 for i in range(0, count, BATCH_SIZE): batch_size = min(BATCH_SIZE, count - len(arr)) batch = [] for _ in range(batch_size): rand_type = random.choice(["int", "float"]) # 控制整数和浮点数的比例 if len(arr) < count * 0.7: # 70% 整数 batch.append(random.randint(-100000, 100000)) else: batch.append(round(random.uniform(-100000, 100000), 3)) arr.extend(batch) update_treeview(unsort_tree, arr) update_treeview(sort_tree, []) # 保存数据 current_file = "random_data.csv" pd.DataFrame(arr).to_csv(current_file, index=False) def file(): file_path = filedialog.askopenfilename( title="选择数据文件", filetypes=[("CSV文件", "*.csv"), ("所有文件", "*.*")] ) if file_path: load_data(file_path) def choose(): choose = var.get() arr_copy = arr.copy() # 创建数据副本(避免修改原始数据) start_time = time.time() if choose == "bubblesort": sorter = Bubble() # 创建冒泡排序对象 sorter_arr,steps = sorter.sort(arr_copy) # 调用排序方法 title="冒泡排序" elif choose == "selectionsort": sorter = Selection() sorter_arr,steps = sorter.sort(arr_copy) title="选择排序" elif choose == "shellsort": sorter = Shell() sorter_arr, steps = sorter.sort(arr_copy) title = "希尔排序" else: sorter = Insertion() sorter_arr,steps = sorter.sort(arr_copy) title="插入排序" # sorting_thread = threading.Thread(target=choose, daemon=True) # sorting_thread.start() elapsed_time = time.time() - start_time filename = "sort.csv" with open(filename,"a",encoding="utf-8") as f: f.write(f"\n{title}\n") f.write("\n".join(map(str,sorter_arr))) # 将排序结果转为字符串并用换行符连接 label1["text"] = f"排序耗时: {elapsed_time:4f} 秒" label2["text"] = f"运算步数: {steps}" label3["text"] = f"结果保存至:\n{os.path.abspath(filename)}" update_treeview(sort_tree, sorter_arr) def open_file(event=None): """打开文件所在的文件夹""" file_path = os.path.abspath(filename) if file_path and os.path.exists(file_path): os.startfile(file_path) def on_combobox_select(event=None): algorithm = var.get() gif_map = { "bubblesort": "bubble.gif", "selectionsort": "sele.gif", "insertionsort": "inster.gif", "quicksort": "quick.gif", "mergesort": "merge.gif", "shellsort":"shell.gif", "cocktailsort": "cocktail.gif", "gnomesort": "gnome.gif", "combsort": "comb.gif", "countingsort": "counting.gif", "radixsort": "radix.gif", "bucketsort": "bucket.gif", "timsort": "tim.gif", "heapsort": "heap.gif" } gif_path = gif_map.get(algorithm, "sorting.gif") update_gif(gif_path) update_treeview(sort_tree, []) label1.config(text="排序耗时:") label2.config(text="运算步数:") label3.config(text="结果文件:") optuple = ("bubblesort","selectionsort","insertionsort","shellsort","cocktailsort","gnomesort","combsort", "countingsort","radixsort") var = StringVar(value=optuple[0]) # 用于存储用户选择的变量 control_frame = ttk.Frame(window) control_frame.pack(fill=tk.X, padx=10, pady=10) ttk.Label(control_frame, text="选择排序算法:").grid(row=0, column=0, padx=5, pady=5) cb = ttk.Combobox(control_frame, textvariable=var, values=optuple, state="readonly", width=15) cb.grid(row=0, column=1, padx=5, pady=5) cb.bind("<<ComboboxSelected>>", on_combobox_select) ttk.Label(control_frame, text="生成数据量:").grid(row=0, column=2, padx=5, pady=5) entry = ttk.Entry(control_frame, width=10) entry.grid(row=0, column=3, padx=5, pady=5) ttk.Button(control_frame, text="生成随机数据",command=generate_random_data).grid(row=0, column=4, padx=5, pady=5) ttk.Button(control_frame, text="选择数据文件",command=file).grid(row=0, column=5, padx=5, pady=5) ttk.Button(control_frame,text="打开结果文件",command=open_file).grid(row=0,column=6,padx=5,pady=5) ttk.Button(control_frame, text="开始排序",command=choose).grid(row=0, column=7, padx=5, pady=5) ttk.Button(control_frame, text="停止排序").grid(row=0, column=8, padx=5, pady=5) # 数据展示区域 data_frame = ttk.Frame(window) data_frame.pack(fill="both", expand=True, padx=10, pady=5) # 未排序数据 unsort_frame = ttk.LabelFrame(data_frame, text="未排序数据") unsort_frame.pack(side=tk.LEFT, fill=tk.BOTH, expand=True, padx=5, pady=5) unsort_tree = ttk.Treeview(unsort_frame, columns=("value",), show="headings", height=15) unsort_tree.heading("value", text="数值") unsort_tree.column("value", width=100) unsort_tree.pack(side=tk.LEFT, fill=tk.BOTH, expand=True) unsort_scrollbar = ttk.Scrollbar(unsort_frame, orient=tk.VERTICAL, command=unsort_tree.yview) unsort_scrollbar.pack(side=tk.RIGHT, fill=tk.Y) unsort_tree.configure(yscrollcommand=unsort_scrollbar.set) # 排序后数据 sort_frame = ttk.LabelFrame(data_frame, text="排序后数据") sort_frame.pack(side=tk.RIGHT, fill=tk.BOTH, expand=True, padx=5, pady=5) sort_tree = ttk.Treeview(sort_frame, columns=("value",), show="headings", height=15) sort_tree.heading("value", text="数值") sort_tree.column("value", width=100) sort_tree.pack(side=tk.LEFT, fill=tk.BOTH, expand=True) # 添加pack sort_scrollbar = ttk.Scrollbar(sort_frame, orient=tk.VERTICAL, command=sort_tree.yview) sort_scrollbar.pack(side=tk.RIGHT, fill=tk.Y) sort_tree.configure(yscrollcommand=sort_scrollbar.set) gif_frame = ttk.Frame(window) gif_frame.pack(fill=tk.X, padx=10, pady=5) gif_label = ttk.Label(gif_frame) gif_label.pack() # 状态信息 status_frame = ttk.Frame(window) status_frame.pack(fill=tk.X, padx=10, pady=5) label1 = ttk.Label(status_frame, text="排序耗时:") label1.grid(row=0, column=0, padx=10, pady=5, sticky="w") label2 = ttk.Label(status_frame, text="运算步数:") label2.grid(row=0, column=1, padx=10, pady=5, sticky="w") label3 = ttk.Label(status_frame, text="结果文件:") label3.grid(row=0, column=2, padx=10, pady=5, sticky="w") update_gif("bubble.gif") window.mainloop() 如何使用threading来使选择数据文件和生产数据文件的大笔资料能够排序
最新发布
07-02
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值