《Handling Cold-Start Problem in Review Spam Detection by Jointly Embedding Texts and Behaviors》阅读笔记

《Handling Cold-Start Problem in Review Spam Detection by Jointly Embedding Texts and Behaviors》阅读笔记

摘录
  1. Compared with the recurrent neural network (RNN), the CNN can do a better job of modeling the different aspects of a review.
疑问
  1. what is global behavioral information the traditional discrete features can not effectively record the global behavioral information
    阅读 (Wang et al., 2016).Learning to Represent Review
    with Tensor Decomposition for Spam Detection

  2. Ren and Zhang (2016) have proved that the CNN can capture complex global semantic information and detect review spam more effectively, compared with traditional discrete manual features and the RNN model.
    阅读Deceptive Opinion Spam Detection Using Neural Network

  3. CNNmodel filter层是否需要activation function

  4. Rating embedding是如何使用的

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值