import tensorflow as tf
from numpy.random import RandomState
batch_size = 8
w1 = tf.Variable(tf.random_normal([2,3], stddev = 1, seed = 1))
w2 = tf.Variable(tf.random_normal([3,1], stddev = 1, seed = 1))
x = tf.placeholder(tf.float32, shape = (None, 2), name = 'x-input')
y_ = tf.placeholder(tf.float32, shape = (None, 1), name = 'y-input')
a = tf.matmul(x, w1)
y = tf.matmul(a, w2)
y = tf.sigmoid(y)
cross_entropy = -tf.reduce_mean(y_ * tf.log(tf.clip_by_value(y, 1e-10, 1.0)) + (1-y_) * tf.log(tf.clip_by_value(1-y, 1e-10, 1.0)))
train_step = tf.train.AdamOptimizer(0.001).minimize(cross_entropy)
rdm = RandomState(1)
dataset_size = 128
X = rdm.rand(dataset_size, 2)
Y = [[int(x1+x2 < 1)] for (x1,x2) in X]
with tf.Session() as sess:
init_op = tf.global_variables_initializer()
sess.run(init_op)
print(sess.run(w1))
print(sess.run(w2))
STEPS = 5000
for i in range(STEPS):
start = (i*batch_size) % dataset_size
end = min(start+batch_size, dataset_size)
sess.run(train_step, feed_dict={x:X[start:end], y_:Y[start:end]})
if i%1000 == 0:
total_cross_entropy = sess.run(cross_entropy, feed_dict={x:X, y_:Y})
print("After %d training steps, cross entropy on all data is %g" %(i, total_cross_entropy))
# print("After %d training steps, cross entropy on all data is" %i)
# print( total_cross_entropy)
print(sess.run(w1))
print(sess.run(w2))
Neural network sample
最新推荐文章于 2025-12-17 02:48:35 发布
本文介绍如何使用TensorFlow和随机生成的数据集训练一个简单的神经网络。通过定义权重矩阵、占位符、前向传播过程及损失函数,采用Adam优化器进行参数更新,最终展示在所有数据上的交叉熵变化。
部署运行你感兴趣的模型镜像
您可能感兴趣的与本文相关的镜像
TensorFlow-v2.15
TensorFlow
TensorFlow 是由Google Brain 团队开发的开源机器学习框架,广泛应用于深度学习研究和生产环境。 它提供了一个灵活的平台,用于构建和训练各种机器学习模型
950

被折叠的 条评论
为什么被折叠?



