Storm与Flink的比较

本文对比了Storm与Flink在状态管理、窗口支持、消息投递、容错方式及应用现状等方面的特性。Flink在状态管理和窗口支持方面更为成熟,提供ExactlyOnce消息投递保证,采用检查点机制进行容错,且在美团点评的实时计算业务中展现出比Storm更高的单线程吞吐量,约为Storm的3-5倍。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Storm与Flink的比较

比较项StormFlink
状态管理无状态,需用户自行进行状态管理有状态
窗口支持对事件窗口支持较弱,缓存整个窗口的所有数据,窗口结束时一起计算窗口支持较为完善,自带一些窗口聚合方法,并且会自动管理窗口状态。
消息投递At Most Once At Least OnceAt Most Once At Least Once Exactly Once
容错方式ACK机制 :对每个消息进行全链路跟踪,失败或超时进行重发。检查点机制 :通过分布式一致性快照机制,对数据流和算子状态进行保存。在发生错误时,使系统能够进行回滚。
应用现状在美团点评实时计算业务中已有较为成熟的运用,有管理平台、常用 API 和相应的文档,大量实时作业基于 Storm 构建。在美团点评实时计算业务中已有一定应用,但是管理平台、API 及文档等仍需进一步完善。

单线程的吞吐量

在这里插入图片描述
(图片参考来自美团技术团队)

  • 上图中蓝色柱形为单线程 Storm 作业的吞吐,橙色柱形为单线程 Flink 作业的吞吐。
  • Identity 逻辑下,Storm 单线程吞吐为 8.7 万条/秒,Flink 单线程吞吐可达 35 万条/秒。
  • 当 Kafka Data 的 Partition 数为 1 时,Flink 的吞吐约为 Storm 的 3.2 倍;当其 Partition 数为 8 时,Flink 的吞吐约为 Storm 的 4.6 倍。
  • 由此可以看出,Flink 吞吐约为 Storm 的 3-5 倍。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值