Ubuntu16.04实现Face_Recongnition

本文介绍在Ubuntu16.04上实现面部识别的过程,包括dlib和face_recognition库的安装与测试,以及通过示例代码展示如何识别图片中的人物。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Ubuntu16.04实现Face_Recongnition

引言

水一个作业练习。参考链接,可能需要科学上网。face_recognition使用dlib最先进的面部识别功能构建而成,并且该模型在LFW数据集中有99.38%的准确率,但是对亚洲人以及婴儿的识别率略微低一点点。

1.安装dlib

参考链接。

#从github克隆代码:
git clone https://github.com/davisking/dlib.git

#构建主dlib库(如果你只想使用Python,则可选):
cd dlib
mkdir build
cd build
cmake .. 
cmake --build .

#构建并安装Python扩展:
cd ..
python3  setup.py

#测试:
python3
import dlib

在这里插入图片描述
根据Linux哲理:没有输出就是最好的输出。就是安装成功了。

2.安装face_recognition

sudo pip3 install face_recognition    #已经集成到python库了
python	 #测试
import face_recognition 

在这里插入图片描述

3.code

import face_recognition
from PIL import Image, ImageDraw
import numpy as np

# This is an example of running face recognition on a single image
# and drawing a box around each person that was identified.

# Load a sample picture and learn how to recognize it.
obama_image = face_recognition.load_image_file("obama.jpg")
obama_face_encoding = face_recognition.face_encodings(obama_image)[0]

# Load a second sample picture and learn how to recognize it.
biden_image = face_recognition.load_image_file("biden.jpg")
biden_face_encoding = face_recognition.face_encodings(biden_image)[0]

# Create arrays of known face encodings and their names
known_face_encodings = [
    obama_face_encoding,
    biden_face_encoding
]
known_face_names = [
    "Barack Obama",
    "Joe Biden"
]

# Load an image with an unknown face
unknown_image = face_recognition.load_image_file("two_people.jpg")

# Find all the faces and face encodings in the unknown image
face_locations = face_recognition.face_locations(unknown_image)
face_encodings = face_recognition.face_encodings(unknown_image, face_locations)

# Convert the image to a PIL-format image so that we can draw on top of it with the Pillow library
# See http://pillow.readthedocs.io/ for more about PIL/Pillow
pil_image = Image.fromarray(unknown_image)
# Create a Pillow ImageDraw Draw instance to draw with
draw = ImageDraw.Draw(pil_image)

# Loop through each face found in the unknown image
for (top, right, bottom, left), face_encoding in zip(face_locations, face_encodings):
    # See if the face is a match for the known face(s)
    matches = face_recognition.compare_faces(known_face_encodings, face_encoding)

    name = "Unknown"

    # If a match was found in known_face_encodings, just use the first one.
    # if True in matches:
    #     first_match_index = matches.index(True)
    #     name = known_face_names[first_match_index]

    # Or instead, use the known face with the smallest distance to the new face
    face_distances = face_recognition.face_distance(known_face_encodings, face_encoding)
    best_match_index = np.argmin(face_distances)
    if matches[best_match_index]:
        name = known_face_names[best_match_index]

    # Draw a box around the face using the Pillow module
    draw.rectangle(((left, top), (right, bottom)), outline=(0, 0, 255))

    # Draw a label with a name below the face
    text_width, text_height = draw.textsize(name)
    draw.rectangle(((left, bottom - text_height - 10), (right, bottom)), fill=(0, 0, 255), outline=(0, 0, 255))
    draw.text((left + 6, bottom - text_height - 5), name, fill=(255, 255, 255, 255))


# Remove the drawing library from memory as per the Pillow docs
del draw

# Display the resulting image
pil_image.show()

# You can also save a copy of the new image to disk if you want by uncommenting this line
# pil_image.save("image_with_boxes.jpg")

未完

这个库真的很酷!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值