Humble Numbers

本文介绍了一种特殊数列——谦逊数(Humble Numbers),这些数仅由2、3、5、7作为质因数构成。文章详细描述了一个算法过程,用于找出数列中的特定元素,并提供了完整的代码实现及样例输出。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Humble Numbers

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 20341    Accepted Submission(s): 8869


Problem Description
A number whose only prime factors are 2,3,5 or 7 is called a humble number. The sequence 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 25, 27, ... shows the first 20 humble numbers.

Write a program to find and print the nth element in this sequence
 

Input
The input consists of one or more test cases. Each test case consists of one integer n with 1 <= n <= 5842. Input is terminated by a value of zero (0) for n.
 

Output
For each test case, print one line saying "The nth humble number is number.". Depending on the value of n, the correct suffix "st", "nd", "rd", or "th" for the ordinal number nth has to be used like it is shown in the sample output.
 

Sample Input
  
1 2 3 4 11 12 13 21 22 23 100 1000 5842 0
 

Sample Output
  
The 1st humble number is 1. The 2nd humble number is 2. The 3rd humble number is 3. The 4th humble number is 4. The 11th humble number is 12. The 12th humble number is 14. The 13th humble number is 15. The 21st humble number is 28. The 22nd humble number is 30. The 23rd humble number is 32. The 100th humble number is 450. The 1000th humble number is 385875. The 5842nd humble number is 2000000000.
 

Source
 

Recommend
JGShining   |   We have carefully selected several similar problems for you:   1159  1069  1176  1421  1024 

分析:题目比较好理解,但是由于数据比较大,和原来做过得题类似,想到暴力,结果过了。

然后看后面分析,发现这题是个dp问题。

代码1:

 #include<cstdio>
#include<cstring>
#include<iostream>
#include<cmath>
#include<algorithm>
using namespace std;
int max1=2000000000;
long long  a[100000];
int cmp(int b,int c)
{
return b<c;
}
int main()
{
int i,j,k,n,l,m=0;
for(i=0;i<32&&pow(2,i)<=max1;i++)
for(j=0;j<21&&pow(2,i)*pow(3,j)<=max1;j++)
for(k=0;k<15&&pow(2,i)*pow(3,j)*pow(5,k)<=max1;k++)
for(l=0;l<13&&pow(2,i)*pow(3,j)*pow(5,k)*pow(7,l)<=max1;l++)
{
a[++m]=pow(2,i)*pow(3,j)*pow(5,k)*pow(7,l);
}
sort(a+1,a+m+1,cmp);
while(~scanf("%d",&n)&&n)
{
int flag=0;
printf("The %d",n);
if(n%10==1&&n%100!=11)
{
printf("st");flag=1;
   }
if(n%10==2&&n%100!=12)
{
printf("nd");flag=1;
   }
if(n%10==3&&n%100!=13)
{
printf("rd");flag=1;
}
if(!flag)
    printf("th");
   printf(" humble number is %lld.\n",a[n]);
}
return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值