介绍PyTorch张量

介绍PyTorch张量

介绍PyTorch张量

PyTorch张量是我们在PyTorch中编程神经网络时将使用的数据结构。

在编程神经网络时,数据预处理通常是整个过程的第一步,数据预处理的一个目标是将原始输入数据转换为张量形式。

torch.Tensor​类的实例

PyTorch张量是torch.Tensor​ Python类的实例。我们可以使用类构造函数创建一个torch.Tensor​对象,如下所示:

> t = torch.Tensor()
> type(t)
torch.Tensor

这创建了一个空张量(没有数据的张量),但我们很快就会添加数据。

张量属性

首先,让我们看看一些张量属性。每个torch.Tensor​都有这些属性:

  • torch.dtype
  • torch.device
  • torch.layout

查看我们的张量t​,我们可以看到以下默认属性值:

> print(t.dtype)
> print(t.device)
> print(t.layout)
torch.float32
cpu
torch.strided

张量具有torch.dtype

dtype​,在我们的例子中是torch.float32​,指定了张量中包含的数据类型。张量包含统一(相同类型)的数值数据,类型如下:

数据类型 dtype CPU张量 GPU张量
32位浮点数 torch.float32 torch.FloatTensor torch.cuda.F
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值