1913 Problem B Freckles

本文介绍了一个基于坐标平面的最短连接线路问题。该问题要求从一系列坐标点出发,寻找一种方式来连接所有点,使得所用的总线路长度最小。文中提供了一种使用Kruskal算法实现的解决方案,并附带了代码示例及运行结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题 B: Freckles
时间限制: 1 Sec 内存限制: 32 MB
献花: 26 解决: 0
[献花][花圈][TK题库]
题目描述
In an episode of the Dick Van Dyke show, little Richie connects the freckles on his Dad’s back to form a picture of the Liberty Bell. Alas, one of the freckles turns out to be a scar, so his Ripley’s engagement falls through.
Consider Dick’s back to be a plane with freckles at various (x,y) locations. Your job is to tell Richie how to connect the dots so as to minimize the amount of ink used. Richie connects the dots by drawing straight lines between pairs, possibly lifting the pen between lines. When Richie is done there must be a sequence of connected lines from any freckle to any other freckle.
输入
The first line contains 0 < n <= 100, the number of freckles on Dick’s back. For each freckle, a line follows; each following line contains two real numbers indicating the (x,y) coordinates of the freckle.
输出
Your program prints a single real number to two decimal places: the minimum total length of ink lines that can connect all the freckles.
样例输入
3
2723.62 7940.81
8242.67 11395.00
4935.54 6761.32
9
10519.52 11593.66
12102.35 2453.15
7235.61 10010.83
211.13 4283.23
5135.06 1287.85
2337.48 2075.61
6279.72 13928.13
65.79 1677.86
5324.26 125.56
0
样例输出
8199.56
32713.73

此代码在codeup上无法通过,可能是精度的问题,但是在牛客网上可顺利通过,在牛客网上跑需要将主函数中的while(cin >> N,N)替换为 while(cin >> N)

#define _CRT_SECURE_NO_WARNINGS
#include <iostream>
#include <cstring>
#include <string>
#include <algorithm>
#include <vector>
#include <queue>
#include <cfloat>
#include <iomanip>
#include <map>

#define INF INT32_MAX
using namespace std;

struct Edge
{
    int u, v;
    double cost;
};

struct vex
{
    double x;
    double y;
    vex(double _x, double _y) :x(_x), y(_y) {};
};

const int MaxN = 110;
const int MaxL = 5000;
int Father[MaxN];
Edge edge[MaxL];
vector<vex> Vex;

int N,L;

bool cmp(Edge a, Edge b)
{
    return a.cost < b.cost;
}

int findRoot(int s)
{
    while (s != Father[s])
        s = Father[s];

    return s;
}

double kruskal(int s)
{
    sort(edge, edge + L,cmp);
    for (int i = 0; i < N; ++i)
        Father[i] = i;

    int curNum = 0;
    double Mincost = 0;
    for (int i = 0; i < L; ++i)
    {
        int u = edge[i].u;
        int v = edge[i].v;
        int ur = findRoot(u);
        int vr = findRoot(v);
        if (ur != vr)
        {
            Father[vr] = ur;
            Mincost += edge[i].cost;;
            ++curNum;

            if (curNum == N - 1)break;
        }
    }

    if (curNum != N - 1)return -1;
    return Mincost;

}


int main()
{
#ifdef _DEBUG
    freopen("data.txt", "r+", stdin);
#endif // _DEBUG

    std::ios::sync_with_stdio(false);

    while (cin >> N, N)
    {
        double x, y;
        Vex.clear(); L = 0;

        for (int i = 0; i < N; ++i)
        {
            cin >> x >> y;
            for (int k = 0; k < Vex.size(); ++k)
            {
                edge[L].u = i;
                edge[L].v = k;
                edge[L++].cost = sqrt(pow(Vex[k].x - x, 2) + pow(Vex[k].y - y, 2));
            }
            Vex.push_back(vex(x, y));
        }

        cout << setiosflags(ios::fixed) << setprecision(2) << kruskal(0) << endl;
    }

    return 0;
}

牛客上通过截图:
这里写图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值