Codeforces 797E Array Queries

本文介绍了一种针对数组查询的高效算法实现,通过预处理和条件判断结合的方式,在O(n√n)的时间复杂度内解决了特定问题。该算法适用于处理大量查询请求,并在不同条件下采用最优策略确保效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目

a is an array of n positive integers, all of which are not greater than n.

You have to process q queries to this array. Each query is represented by two numbers p and k. Several operations are performed in each query; each operation changes p to p + ap + k. There operations are applied until p becomes greater than n. The answer to the query is the number of performed operations.

输入

The first line contains one integer n (1 ≤ n ≤ 100000).

The second line contains n integers — elements of a (1 ≤ ai ≤ n for each i from 1 to n).

The third line containts one integer q (1 ≤ q ≤ 100000).

Then q lines follow. Each line contains the values of p and k for corresponding query (1 ≤ p, k ≤ n).

输出

Print q integers, ith integer must be equal to the answer to ith query.

样例

input
3
1 1 1
3
1 1
2 1
3 1
output
2
1
1

注意事项

Consider first example:

In first query after first operation p = 3, after second operation p = 5.

In next two queries p is greater than n after the first operation.

题解

我用了Codeforces官方Tutorial的做法.因为我觉得它的写法已经很简单易懂了,就不具体补充了。具体如下:

There are two possible solutions in O( n2 ) time.

First of them answers each query using simple iteration — changes p to
p+ap+k for each query until p becomes greater than n, as stated in
the problem. But it is too slow.

Second solution precalculates answers for each p and k:

if p+ap+k>n, then ansp,k=1, else ansp,k=ansp+ap+k,k+1.
But this uses O(n2) memory and can be done in O(n2) time.

Now we can notice that if k<n, then second solution will use only O(n)time
and memory, and if kn , then first solution will do not more than n
operations on each query. So we can combine these two solutions.

Time complexity: O(nn)

代码

#include<bits/stdc++.h>
using namespace std;
const int maxn=100000+10;
const int maxm=317;
int a[maxn],n,q,dp[maxn][maxm];
vector<int> G[maxn];

void init(void)
{
    for(int j=1;j<maxm;j++)
    {
        for(int i=n;i>=1;i--)
        {
            if(i+j+a[i]>n)
                dp[i][j]=1;
            else
                dp[i][j]=1+dp[i+j+a[i]][j];
        }
    }
}
int solve(int p,int k)
{
    int cnt=0;
    while(p<=n)
    {
        p=a[p]+p+k;
        cnt++;
    }
    return cnt;
}
int main(void)
{
    int p,k;
    cin>>n;
    for(int i=1;i<=n;i++)
        scanf("%d",&a[i]);
    init();//precalculation:dp
    cin>>q;
    while(q--)
    {
        scanf("%d%d",&p,&k);
        if(k>315)//use brute force
            printf("%d\n",solve(p,k));
        else
            printf("%d\n",dp[p][k]);
    }

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值