HDU-1695-GCD(莫比乌斯反演)

本文介绍了一种解决特定GCD问题的算法实现,通过预处理得到莫比乌斯函数值,快速计算在给定范围内两数的最大公约数等于指定值的数对数量。文章详细展示了算法流程及核心代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Problem Description
Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y) = k. GCD(x, y) means the greatest common divisor of x and y. Since the number of choices may be very large, you're only required to output the total number of different number pairs.
Please notice that, (x=5, y=7) and (x=7, y=5) are considered to be the same.

Yoiu can assume that a = c = 1 in all test cases.
 

Input
The input consists of several test cases. The first line of the input is the number of the cases. There are no more than 3,000 cases.
Each case contains five integers: a, b, c, d, k, 0 < a <= b <= 100,000, 0 < c <= d <= 100,000, 0 <= k <= 100,000, as described above.
 

Output
For each test case, print the number of choices. Use the format in the example.
 

Sample Input
  
2 1 3 1 5 1 1 11014 1 14409 9
 

Sample Output
  
Case 1: 9 Case 2: 736427
Hint
For the first sample input, all the 9 pairs of numbers are (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5).
 

Source


思路:GCD(X,Y)=K可转化为GCD(X,Y)=1,对应的上界变成b/k和d/k。


#include <stdio.h>
#include <string.h>

int prime[100005],mu[100005];
bool check[100005];

void Mobius(int n)
{
    int i,j,cnt;

    memset(check,0,sizeof check);

    cnt=0;
    mu[1]=1;

    for(i=2;i<=n;i++)
    {
        if(!check[i])
        {
            prime[cnt++]=i;

            mu[i]=-1;
        }

        for(j=0;j<cnt;j++)
        {
            if(i*prime[j]>n) break;

            check[i*prime[j]]=1;

            if(i%prime[j]) mu[i*prime[j]]=-mu[i];
            else
            {
                mu[i*prime[j]]=0;

                break;
            }
        }
    }
}

int main()
{
    int T,a,b,c,d,k,i,cases;
    long long ans,temp;

    Mobius(100000);

    scanf("%d",&T);

    for(cases=1;cases<=T;cases++)
    {
        scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);

        if(!k)
        {
            printf("Case %d: 0\n",cases);

            continue;
        }

        if(b>d) b=b+d,d=b-d,b=b-d;//swap(b,d);

        b/=k;
        d/=k;

        ans=temp=0;

        for(i=1;i<=b;i++) ans+=(long long)mu[i]*(b/i)*(d/i);//求出(1,b),(1,d)之间的互质数的对数

        for(i=1;i<=b;i++) temp+=(long long)mu[i]*(b/i)*(b/i);//求出(1,b),(1,b)之间的互质数的对数

        printf("Case %d: %I64d\n",cases,ans-temp/2);
    }
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值